高含硫气藏储层井筒一体化模拟研究
本文关键词:高含硫气藏储层井筒一体化模拟研究 出处:《西南石油大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 高含硫气藏 气固两相流 渗流模型 数值模拟 井筒温度压力 一体化
【摘要】:在我国四川盆地地区有许多高含硫气藏,与常规气藏相比,该类气藏天然气成分中包含有H2S,CO2等酸性气体,同时还溶解有元素硫,酸性气体的存在必然影响气体性质。随着开采的进行,储层压力的降低造成元素硫的析出使得流动变成复杂的气固两相流,同时元素硫的沉积对储层的孔隙度渗透率产生影响。在高含硫气井井筒中,酸性气体的存在以及从储层中携带出的硫以及井筒压力条件下析出的硫也会影响气井井筒温度和压力的分布。储层和井筒的流动是一个连续的过程,储层条件的改变也会造成井筒温度压力分布的变化。建立能够描述高含硫气藏渗流和井筒流体流动的数学模型并求解计算,实时反映储层和井筒动态参数的变化,能够为高含硫气藏的高效开发提供参考依据,具有重要的指导意义。本文以实现高含硫气藏储层井筒一体化模拟为目标,主要开展了以下一些研究,并取得了以下一些认识:(1)高含硫气藏流体的流动特征研究,包括H2S的来源与性质,元素硫的溶解析出特征,以及元素硫在储层中的运移、沉降、吸附特征,高含硫气体物性参数特征等;高含硫气体物性参数如偏差因子,粘度,密度等需要进行酸性校正。(2)基于Warren-Root双重介质模型建立了用于描述高含硫气藏储层流体流动的气固两相渗流数学模型,对模型进行数值求解,并通过与文献中的模拟数据结果进行对比,验证模型的可靠性,并分析了井底压力曲线发生陡降的原因。(3)建立高含硫气井井筒单相流动的温度压力模型以及考虑析出硫为固态时的气固两相流动的井筒温度压力模型,给出井筒温度压力耦合计算算法;通过与商业软件Pipesim的计算结果进行对比,保证模型的正确性。运用所建立的模型对比单相流和气固两相流的井筒温度压力计算结果,发现气固两相流计算的温度压力比单气相时偏低,说明两相流能量损失,热量损失更大一些。并发现在井筒流体中硫较少时,两相流对温度压力计算结果影响并不大。(4)在储层渗流模型和井筒温度压力模型的基础上,将两部分以井底压力为衔接点进行连续求解,从而实现一体化计算。(5)建立机理模型分别对比了考虑硫析出沉积和不考虑硫析出沉积对储层和井筒的影响,以及通过改变初始含硫量来分析硫的析出沉积量的多少对储层和井筒的影响,结果发现硫沉积降低了稳产时间,并且初始含硫量越大,稳产时间越短;井筒中析出的硫降低井筒温度,但析出较少时影响并不大,甚至可以忽略。(6)通过生产实例对高含硫气藏进行储层井筒一体化模拟,模拟计算该区块储层硫沉积,孔隙度,渗透率等参数及井筒温度压力剖面随时间的变化,为高含硫气藏的动态预测分析提供参考。
[Abstract]:There are many high sulfur gas reservoirs in Sichuan Basin area of China. Compared with conventional gas reservoirs, these gas reservoirs contain acid gases such as H _ 2S _ 2 _ 2 and dissolved elemental sulfur. The existence of acid gas will inevitably affect the gas properties. With the development of production, the reduction of reservoir pressure leads to the release of elemental sulfur, which makes the flow into a complex gas-solid two-phase flow. At the same time, the deposition of elemental sulfur has an effect on the porosity and permeability of the reservoir. The presence of acid gas, sulfur from reservoir and sulfur from wellbore pressure will also affect the distribution of wellbore temperature and pressure. The flow of reservoir and wellbore is a continuous process. The change of reservoir condition will also cause the change of wellbore temperature and pressure distribution. The mathematical model which can describe the percolation and wellbore fluid flow in high sulfur gas reservoir is established and solved. Reflecting the change of dynamic parameters of reservoir and wellbore in real time can provide reference basis for the high efficiency development of high sulfur gas reservoir and has important guiding significance. The aim of this paper is to realize the integrated well bore simulation of high sulfur gas reservoir. The following researches have been carried out, and some understandings have been obtained as follows: 1) the fluid flow characteristics of high sulfur gas reservoirs, including the source and properties of H 2S and the characteristics of elemental sulfur dissolution and precipitation. And the migration of elemental sulfur in the reservoir, sedimentation, adsorption characteristics, physical properties of high sulfur gas, etc. High sulfur gas physical parameters such as deviation factor, viscosity. Based on the Warren-Root dual medium model, the mathematical model of gas-solid two-phase percolation is established to describe the fluid flow in high-sulfur gas reservoirs. The model is solved numerically, and the reliability of the model is verified by comparing the results with the simulation data in the literature. The reason of the steep drop of bottom hole pressure curve is analyzed.) the temperature and pressure model of single phase flow in high sulfur gas well and the temperature and pressure model of gas-solid two-phase flow with sulfur precipitation as solid state are established. The calculation algorithm of wellbore temperature and pressure coupling is given. By comparing the calculation results with commercial software Pipesim to ensure the correctness of the model, the established model is used to compare the wellbore temperature and pressure calculation results of single-phase flow and gas-solid two-phase flow. It is found that the temperature and pressure calculated by gas-solid two-phase flow is lower than that of single gas phase, which indicates that the energy loss and heat loss of two-phase flow are higher than that of single gas phase flow, and it is found that when sulfur is less in wellbore fluid. The effect of two-phase flow on the calculation results of temperature and pressure is not great.) on the basis of reservoir percolation model and wellbore temperature and pressure model, the two parts are solved continuously with bottom hole pressure as the junction point. Thus, the mechanism model is established to compare the effects of sulfur deposition and no sulfur deposition on reservoir and wellbore, respectively. By changing the initial sulfur content to analyze the influence of the amount of sulfur deposition on the reservoir and wellbore, the results show that sulfur deposition reduces the stable production time, and the higher the initial sulfur content, the shorter the stable production time; The sulfur emitted from the wellbore reduces the wellbore temperature, but when the precipitation is less, the influence is not great, even can be ignored. 6) through the production example to carry on the wellbore integration simulation to the high-sulfur gas reservoir. The parameters such as sulfur deposition porosity permeability and wellbore temperature and pressure profile in this block are simulated and calculated with time which provides a reference for the performance prediction and analysis of high sulfur gas reservoirs.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE37
【相似文献】
相关期刊论文 前10条
1 王鸣华;孙家征;;四川气藏的类型及其开采特征[J];天然气工业;1982年04期
2 宣大文;丁桂荣;;辽河断陷气藏开采特征[J];天然气工业;1986年02期
3 李华明;;从川东已开发气藏谈不同类型气藏合理布井问题[J];天然气工业;1996年01期
4 黄兰;孙雷;孙良田;张建业;周岩;;高含硫气藏硫沉积预测模型和溶解度计算方法研究[J];重庆科技学院学报(自然科学版);2008年02期
5 孙家征;王鸣华;;试论四川不同类型气藏的开发程序[J];天然气工业;1990年03期
6 程绪彬;石新;刘仲宣;唐泽尧;汪娟;;一种新的气藏类型——现今风化膏溶洞缝型泥岩次生气藏[J];天然气工业;2007年11期
7 丁传柏;;气藏递减规律的讨论[J];天然气工业;1982年02期
8 李治平;;气藏试井数据计算机自动拟合新方法[J];钻采工艺;1992年03期
9 彭英,弋戈;中坝气田某气藏高效开发经验[J];天然气勘探与开发;2004年04期
10 杜志敏;张勇;郭肖;杨学锋;;高含硫气藏中的硫微粒运移和沉积[J];西安石油大学学报(自然科学版);2008年01期
相关会议论文 前2条
1 杨知盛;尹洪军;刘淑云;;深层高压气藏动态分析方法[A];第十六届全国水动力学研讨会文集[C];2002年
2 范学平;张晓丹;;平湖油气田放一断块气藏增产可行性方案[A];第五次东海石油地质研讨会论文集[C];2004年
相关重要报纸文章 前2条
1 通讯员 刘永柯 梁华;水之战:地层深处的博弈[N];中国石油报;2011年
2 朱润忠;平衡罐加注泡排施工日增天然气1000立方米[N];中国石化报;2009年
相关博士学位论文 前7条
1 乔林;新场须二气藏隔气式气水分布特征及开发对策研究[D];成都理工大学;2015年
2 张勇;高含硫气藏硫微粒运移沉积数值模拟研究[D];西南石油大学;2006年
3 刘正中;低渗砂岩气藏剩余气分布规律研究[D];成都理工大学;2005年
4 郑军;大牛地老区低渗致密多层叠合砂岩气藏稳产技术对策研究[D];成都理工大学;2011年
5 张广东;高含硫气藏相态特征及渗流机理研究[D];成都理工大学;2014年
6 张文亮;高含硫气藏硫沉积储层伤害实验及模拟研究[D];西南石油大学;2010年
7 杨宇;开发早期岩性气藏动态描述[D];成都理工大学;2004年
相关硕士学位论文 前10条
1 李杰;涩北二号Ⅲ-1-2层组生产动态分析评价及稳产工艺技术研究[D];西安石油大学;2015年
2 百宗虎;异常高压整装气藏水浸动态分析方法改进与应用研究[D];西南石油大学;2012年
3 胡俊;榆林南区气藏产能及动态储量评价研究[D];东北石油大学;2015年
4 李纪;SDN气藏气井生产动态分析及合理工作制度研究[D];西南石油大学;2016年
5 何佳林;不同贯穿程度裂缝气藏底水驱采收率研究[D];西南石油大学;2016年
6 李周;高含硫气藏地层硫沉积规律研究[D];西南石油大学;2016年
7 石婷;裂缝性底水气藏水侵物理模拟及数值模拟研究[D];西南石油大学;2016年
8 李李;沙二气藏水平井压裂参数优化与产量预测研究[D];成都理工大学;2016年
9 李静;X1井区西山窑组气藏试井解释及泄气半径的研究与应用[D];西南石油大学;2015年
10 邓夏;中坝须二气藏酸化工艺技术实践[D];西南石油大学;2016年
,本文编号:1425296
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1425296.html