炼油废水生化处理单元的数值研究与优化
本文关键词: 炼油废水 传统活性污泥工艺 两级A/O工艺 模拟优化 出处:《青岛科技大学》2017年硕士论文 论文类型:学位论文
【摘要】:目前对于炼油废水处理的提标方法主要是在生化单元后增加其他处理设备和工艺,增加了炼油废水处理的能耗及成本。本文以某炼油厂炼油废水第一、第二处理厂废水处理工艺设施的实际运行情况为例,应用Bio Win 5.0软件首先建立两级A(厌氧)/O(好氧)工艺生化单元的ASDM数学模型,对两级A/O工艺的生化处理单元进行模拟优化研究并进行现场实验验证,再建立传统活性污泥工艺模型,对传统活性污泥工艺生化单元进行模拟优化研究:1、通过实验分别对两级A/O工艺和传统活性污泥工艺进出水水质进行分析,实验检测模型所需水质常规组分和特殊组分。通过灼烧法测定各工艺曝气池中的污泥浓度(MLSS)用于评估工艺运行状况和建立模型。两级A/O工艺现场沉淀池存在跑泥现象,通过静态浓缩实验校正两级A/O工艺沉淀池模型。2、建立两级A/O工艺模型,模拟工艺实际运行状况并校准模型,并针对该工艺出水生化需氧量(COD)和总氮(TN)出水不达标等问题进行模拟优化。通过模拟优化发现,一级、二级O池溶解氧(DO)浓度对生化系统影响较小,维持在2mg/L即可,同时可节省曝气能耗;为保证工艺COD出水达标,一级A/O的MLSS维持在4000 mg/L左右,二级A/O的MLSS维持在2000 mg/L左右,同时采用分段进水,可提高TN处理效率,保证工艺TN出水达标。通过现场部分实验验证的模型优化结果,进一步验证了所建模型以及模型模拟优化方法的准确性。由于第一处理厂的两级A/O工艺模拟优化后仍存在无法达标的隐患,通过模拟对该工艺进行改造优化,将原工艺改造为水解池+一级A/O工艺,并将现场O池以及沉淀池并联使用,增加硝化液回流,且无需添加Na OH溶液。并通过模拟选择改造后工艺的最佳运行方案,改造后的工艺条件参数如下:好氧曝气池DO浓度保持在2mg/L,曝气池的MLSS应维持在3000~4000 mg/L,硝化液回流比为100%。改造后工艺较原工艺COD去除率提高2.5%,TN去除率提高19.6%,改造后优化效果明显。3、建立传统活性污泥工艺模型,模拟工艺实际运行状况并校准模型,并针对该工艺出水COD不稳定、易超标、出水TN无法达标等问题进行模拟优化。通过模拟优化发现,一级、二级O池DO浓度对系统影响较小,维持在2mg/L即可,同时可节省曝气能耗;为保证工艺COD出水达标,一级曝气池的MLSS维持在6000 mg/L左右,二级曝气池的MLSS维持在2000 mg/L左右;分段进水优化对TN去除效果影响较小,工艺优化无法使TN达标排放,需要通过模拟对该工艺进行改造优化。将原工艺改造为A/O工艺,将现场一级曝气池前半段改为厌氧段,将沉淀池并联使用;针对工艺出水TN无法有效去除的情况,增加硝化液回流,且无需添加Na OH溶液。通过模拟选择改造后工艺的最佳运行方案,改造后的工艺条件参数如下:好氧曝气池DO浓度保持在2mg/L,曝气池的MLSS应维持在3000~4000 mg/L,硝化液回流比为100%。改造后工艺较原工艺COD去除率提高3.12%,TN去除率提高36%,优化效果明显。
[Abstract]:The refinery wastewater treatment standard is the main method of increasing other processing equipment and technology in biochemical unit, increased energy consumption and cost of refinery wastewater treatment. In this paper a refinery refinery wastewater treatment facilities, second wastewater treatment plant operation situation as an example, using Bio Win 5 software is firstly established in two A (anaerobic) /O (aerobic) ASDM mathematical model of process of biochemical unit, biochemical treatment unit of two stage A/O process simulation and optimization research and field experiment, and then establish the conventional activated sludge process model, research on Simulation and optimization of conventional activated sludge biochemical unit: 1, through the experiment on two respectively. A/O process and conventional activated sludge process and water quality analysis, experimental testing model for conventional water quality and special compositions. Through the determination of the burning process in the aeration tank The sludge concentration (MLSS) was used to evaluate the operation condition and process model. The two stage A/O process on sedimentation tank sludge exist phenomenon, through the static concentration correction in two stage A/O process clarifier model.2, the establishment of two stage A/O process model, process simulation and actual operation condition and the calibration model, the effluent biochemical oxygen demand (COD) and total nitrogen (TN) of the water is not standard for simulation and optimization. It is found that, through the simulation and optimization of a grade, two grade O dissolved oxygen (DO) concentration had little effect on the biochemical system, can be maintained at 2mg/L, and can save the energy consumption of aeration; in order to ensure the process COD effluent standard, the level of A/O MLSS maintained at about 4000 mg/L, two A/O MLSS maintained at about 2000 mg/L, at the same time by step-feed, can improve the treatment efficiency of TN, ensure the process TN effluent standards. Through the optimization results of the model on experimental verification, further verified The model and simulation accuracy optimization method. Because there are still unable to reach the hidden dangers of simulation and optimization of two stage A/O process for the first treatment plant, through the simulation and optimization of the transformation process, the original process for the transformation of a hydrolysis pool + A/O process, and the scene to O pool and sedimentation tank used in parallel increase the nitrification liquid reflux without adding Na, OH solution. And the optimal operation scheme after the transformation process through the simulation, the following process parameters after the transformation of the aerobic aeration tank of DO concentration in 2mg/L, MLSS in aeration tank should be maintained at 3000~4000 mg/L, the nitrification liquid reflux ratio is 100%. after the transformation process is better than the original process for the removal rate of COD increased by 2.5%, the removal rate of TN increased by 19.6%, after the transformation of the optimization effect is obvious.3, a conventional activated sludge process model, process simulation and actual operation condition and the calibration model, the effluent COD is not stable, Easy to exceed the standard, the problem of effluent TN compliance can not simulated optimization. Found by simulation and optimization level, two level O pool DO concentration on the system has little effect, can be maintained at 2mg/L, and can save the energy consumption of aeration; in order to ensure the process COD effluent standard, an aeration tank MLSS is maintained at about 6000 mg/L, two aeration tank MLSS maintained at about 2000 mg/L; step-feed optimization have little influence on the removal of TN, process optimization can not make TN emission standards, through the simulation and optimization of the transformation process. The transformation process is A/O process, will be the scene of a stage aeration tank first half to anaerobic, the sedimentation tank according to the process used in parallel; the effluent TN can not effectively remove the situation, increase the nitrification liquid reflux, and there is no need to add Na OH solution. The optimal operation scheme of simulation selection after transformation process, the following conditions after the transformation parameters: Aerobic aeration tank DO When the concentration is kept at 2mg/L, the MLSS of the aeration tank should be maintained at 3000~4000 mg/L, and the reflux ratio of nitrifying liquid is 100%.. After transformation, the removal rate of COD is increased by 3.12% compared with the original process, and the removal rate of TN is increased by 36%, and the optimization effect is obvious.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X742
【相似文献】
相关期刊论文 前10条
1 ;全国有机废水生化处理研讨会在杭闭幕[J];环境污染与防治;2004年06期
2 汪晓军,肖锦;三氯新对废水生化处理系统的影响研究[J];日用化学工业;2002年02期
3 史红文,夏畅斌,陈安国,冯万能;提高酚氰废水生化处理工艺的效率[J];环境工程;2002年02期
4 冼萍,黄世钊,陆豫,董毅宏,王孝英;多功能废水生化处理实验装置的研制及应用[J];广西大学学报(自然科学版);2003年S1期
5 胡丽萍;叶忠东;;废水生化处理技术有效性教学初探[J];城市公用事业;2006年04期
6 金亚飚;刘勇;袁军;田麟;王智铭;;冷轧浓油废水生化处理设施的设计与运行[J];给水排水;2012年S2期
7 赵宝润;;氯霉素硝基废水生化处理试验鉴定会[J];医药工业;1979年09期
8 朱德炯,王世昌;印染废水生化处理的多层布置形式[J];印染;1983年05期
9 程雅华,范影,,薛凤珍;高压M废水生化处理中硫化物测定方法的探讨[J];环境保护科学;1994年03期
10 刘学东;炼油废水生化处理方案选择[J];石油化工环境保护;1995年02期
相关会议论文 前4条
1 朱玉娟;;关于废水生化处理均衡稳定运行的探讨实践[A];加入WTO和中国科技与可持续发展——挑战与机遇、责任和对策(上册)[C];2002年
2 刘正;;高盐废水生化处理[A];中国水污染防治技术装备论文集(第六期)[C];2000年
3 金亚飚;刘勇;;冷轧浓油废水生化处理设施的设计与运行[A];2012(第六届)水业高级技术论坛论文集[C];2012年
4 刘健勤;;矿山废水生化处理的人工生命模型辨识方法[A];矿井建设与岩土工程技术新发展[C];1997年
相关重要报纸文章 前10条
1 金亚飚 刘勇 袁军 田麟 王智铭;冷轧浓油废水生化处理设施的设计与运行[N];世界金属导报;2013年
2 金亚飚 译;美国钢铁加拿大公司哈密尔顿厂焦化废水生化处理[N];世界金属导报;2013年
3 张扬、特约记者李先祥;绿色处废 受益环保[N];战士报;2011年
4 广州中环万代环境工程有限公司 丘治平;造纸工业废水生化处理的设计[N];中国环境报;2005年
5 本报记者 李新雄邋通讯员 唐杰;柳州市快刀砍向污染老问题[N];广西日报;2008年
6 中环万代环境工程有限公司 丘治平;造纸工业废水生化处理的设计[N];中国环境报;2004年
7 周立军;“博城”巨资打造环保低碳生产[N];齐齐哈尔日报;2010年
8 记者 郭凤美;中阳钢铁1.3亿元资金投向循环经济[N];山西经济日报;2006年
9 记者 刘明亮;中钢亿元巨资强化环保[N];山西日报;2006年
10 张英;自强厚德创业路 节能环保辟金牌[N];中国企业报;2009年
相关硕士学位论文 前4条
1 张艳梅;高效菌强化腈纶废水生化处理效果试验研究[D];兰州交通大学;2015年
2 孙华伟;炼油废水生化处理单元的数值研究与优化[D];青岛科技大学;2017年
3 谢微;煮茧和汰头废水丝胶回收及后续废水生化处理研究[D];广西师范大学;2011年
4 贾鹏;含有机络合剂的重金属废水生化处理研究[D];南京理工大学;2013年
本文编号:1523813
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1523813.html