模拟势能驱动换绳实验平台的设计与研究
本文选题:势能驱动 切入点:换绳 出处:《太原理工大学》2017年硕士论文 论文类型:学位论文
【摘要】:摩擦式提升机在我国许多煤矿的生产系统中扮演重要角色。随着开采深度的加深,多绳摩擦提升机的应用广泛起来。根据我国《煤矿安全规程》中对提升钢丝绳更换要求,钢丝绳的更换工作是一项无法避免且具有安全风险的工作。现有一种新型钢丝绳首绳更换装置即势能驱动快速换绳装置,其特点是利用能量转换,通过钢丝绳重将重力势能转化为液压能,从而达到减少系统发热和耗能的作用。经过工业试验证明该装置能够顺利且安全地完成首绳更换任务。作为一台准备定制生产的专业性换绳装置,为了完善对该装置的安全检测手段,提高装置出厂性能指标,提高针对该装置的各项实验效率以及能够获得换绳装置在运行过程中的各项可靠参数,同时也为了对换绳装置的故障判断提供参考,本文针对该新型势能驱动换绳装置设计了一套实验平台,该实验平台集实验数据采集、换绳动作测试、产品出厂检验等功能于一体,保证到达现场工作的换绳装置的各项参数指标达到最佳状态,实现安全换绳的目的。本文首先介绍了势能驱动快速换绳装置各个组成部分及工作原理,并通过现场工业测试对换绳装置及其势能驱动环节有了更深刻的认识,在此基础上提出了实验平台的初始方案。该方案充分利用换绳装置的资源,使被实验对象即换绳装置的步进油缸组与实验平台的实验油缸组实现无缝对接,保证实验效率。为了检测方案能否实现预计功能,本文对机械系统建立了三维模型,通过ADAMS软件利用三维模型建立了动力学仿真模型,又通过AMESim建立了液压仿真模型,并充分利用以上两个软件对实验平台的初始方案进行了机-液耦合仿真,通过分析仿真结果得出如下结论:初始方案能够实现预期功能,不同的模拟推力和运行时间对实验平台的系统造成的影响不同,运行时间相同时,模拟推力越大,系统振动越明显,当模拟推力相同时,运行时间越短,系统振动越明显,并给出了换绳实验中钢丝绳绳重区间对应的较合理的运行时间区间,而通过对动态特性曲线的分析指出实验平台的整体性能需要进一步提高。要实现对实验平台整体性能的提高,本文从自动控制角度入手,提出利用电液比例技术、反馈控制技术等对实验平台初始方案进行优化的方案,通过建立优化方案的数学模型,从理论上对优化方案有了较深刻的认识,然后利用MATLAB的Simulink功能建立了优化方案的控制仿真模型,将该模型与优化之后重新搭建的液压仿真模型联合进行了液-控耦合仿真,通过仿真得到的动态曲线可知优化方案使实验平台的整体性能有了较大的提高,在运行速度和运行稳定性方面表现的比较明显,运行速度达到160mm/s以上,而运行过程中出现的最大加速度值为0.045m/s2,通过优化基本上达到了设计初期对实验平台在功能和性能上的要求。
[Abstract]:Friction hoist plays an important role in the production system of many coal mines in China. With the deepening of mining depth, the multi-rope friction hoist is widely used. The replacement of wire rope is an unavoidable and safe work. There is a new type of wire rope replacement device, which is driven by potential energy, which is characterized by the use of energy conversion. The gravity potential energy is converted into hydraulic energy by wire rope weight, It can reduce the heating and energy consumption of the system. It has been proved by industrial tests that the device can successfully and safely complete the task of replacing the first rope. In order to improve the safety detection means of the device, to improve the performance index of the device, to improve the experimental efficiency and to obtain the reliable parameters of the rope changing device in the course of operation, At the same time, in order to provide a reference for the fault judgment of the rope changer, this paper designs a set of experimental platform for the new potential energy driven rope changer. The experimental platform collects the experimental data and tests the action of changing rope. The functions of product inspection such as factory inspection are integrated to ensure that the parameters of the rope changer arriving at the site reach the best condition. In this paper, the components and working principle of the quick rope changing device driven by potential energy are introduced, and a deeper understanding of the rope changing device and its potential energy driving link is obtained through the field industrial test. On this basis, the initial scheme of the experimental platform is put forward, which makes full use of the resources of the rope changer to make the walking cylinder group of the experimental object, that is, the rope changing device, seamlessly docking with the experimental oil cylinder group of the experimental platform. In order to test whether the scheme can realize the function of prediction, this paper establishes a three-dimensional model of the mechanical system, establishes a dynamic simulation model by using the three-dimensional model through ADAMS software, and establishes a hydraulic simulation model by means of AMESim. Using the above two softwares to simulate the initial scheme of the experimental platform, the simulation results are as follows: the initial scheme can achieve the expected function. Different simulated thrust and running time have different effects on the system of the experimental platform. When the running time is the same, the larger the simulated thrust, the more obvious the system vibration is. When the simulated thrust is the same, the shorter the running time, the more obvious the system vibration is. The reasonable running time interval corresponding to the wire rope weight interval in the rope exchange experiment is also given. Through the analysis of the dynamic characteristic curve, it is pointed out that the overall performance of the experimental platform needs to be further improved. In order to achieve the improvement of the overall performance of the experimental platform, this paper, from the perspective of automatic control, puts forward the use of electro-hydraulic proportional technology. Feedback control technology is used to optimize the initial scheme of the experimental platform. By establishing the mathematical model of the optimization scheme, the theoretical understanding of the optimization scheme is obtained. Then the control simulation model of the optimization scheme is established by using the Simulink function of MATLAB, and the hydraulic simulation model is combined with the hydraulic simulation model which is rebuilt after optimization to carry out the liquid-control coupling simulation. According to the dynamic curves obtained by simulation, the optimization scheme has greatly improved the overall performance of the experimental platform, and the performance of the experimental platform is obvious in terms of running speed and stability, and the running speed is more than 160 mm / s. However, the maximum acceleration value is 0.045 m / s ~ (2), which basically meets the requirements for the function and performance of the experimental platform at the beginning of the design.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD534.3
【参考文献】
相关期刊论文 前10条
1 王楠楠;李军霞;张海平;黄镇;;基于ADAMS和AMESim的断带保护装置联合仿真研究[J];煤炭技术;2015年12期
2 雷云翔;谷嘉庆;;快速更换摩擦式提升机首绳方法[J];中国资源综合利用;2014年05期
3 黄山;马雷;;多绳摩擦式提升钢丝绳更换新工艺[J];河南科技;2013年24期
4 陈永清;徐其彬;徐新和;;基于Simulink的液压闭环位置控制系统建模与仿真[J];机床与液压;2013年21期
5 马建国;陈达;;摩擦式提升机提升钢丝绳更换工艺探析[J];硅谷;2013年18期
6 白全林;;多绳摩擦轮式提升机提升钢丝绳更换工艺分析与实施[J];科技信息;2013年25期
7 陈曦;解宁;郭津津;;基于AMESim的比例阀控液压缸系统的仿真与分析[J];机床与液压;2013年13期
8 胡晓虎;;矿井提升机安全技术现状和发展趋势[J];冶金动力;2012年04期
9 于宗振;;基于AMEsim/Simulink的电液伺服比例控制的同步回路建模与仿真研究[J];机械研究与应用;2012年03期
10 贾剑峰;田润利;林涛;丁礼磊;;基于ADAMS和AMESim的泵送系统联合仿真与试验研究[J];建筑机械;2011年19期
相关硕士学位论文 前4条
1 李龙;首绳快速更换装置液压控制系统研究[D];太原理工大学;2014年
2 陈曦;电液比例阀控缸位置控制系统的分析及优化[D];天津理工大学;2013年
3 赵宁;多绳摩擦式提升机快速换绳系统的研究与仿真[D];太原理工大学;2008年
4 吴娟;多绳摩擦提升机快速换绳系统的研究[D];太原理工大学;2004年
,本文编号:1564491
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1564491.html