石西油田石炭系火山岩储层及流体识别研究
本文选题:四性关系 切入点:流体识别 出处:《西南石油大学》2017年硕士论文 论文类型:学位论文
【摘要】:本论文在利用前人对石西油田石炭系火山岩油藏研究成果的基础上,结合钻井、测井、录井、岩心分析测试及试油等资料,运用地球物理技术和地质方法,通过多种手段、多学科交叉分析,来开展石西油田石炭系储层及流体识别研究。石西油田石炭系火山岩划分为爆发相和溢流相,其中以溢流相为主。岩性以条带状熔岩、集块岩、角砾熔岩、致密凝灰岩为主;储集空间类型以基质溶孔、缝内充填物溶孔、气孔充填物溶孔、角砾间溶孔等为主,属于中-高孔低渗非均质性强的裂缝-孔隙型储层。储层四性关系分析,储层物性与岩性的相关性较好,其中集块岩和角砾熔岩的物性比较好,具有较高的孔隙度和渗透率,而条带状熔岩具有较高孔隙度和较低渗透率;含油级别为荧光显示,测井曲线中电阻率随含油性增加而增大;自然电位在有油气显示正差异;风化粘土层的自然电位表现为负异常,电阻率低值基线,无油气显示。运用五种方法判别储层流体性质,其中电阻率与孔隙度交会法识别油、水层和干层最好,符合率为80%;正态概率分布法和Rt/Rxo与Rt交会法对于油层和水层识别较好,符合率为63.63%;孔隙度测井曲线重叠法对干层和水层识别较好;深浅电阻率差异识别法受多种因素影响,难以把握好。储层参数测井解释模型和流体识别图版,可知孔隙度的下限值为9%,渗透率为下限值0.2mD,含油饱和度下限为45%。综上所述,基于对研究区火山岩储层物性特征、四性关系、储层参数模型、物性下限、单井流体识别,油层连井对比剖面的研究,结合生产动态资料分析,油层主要分布在岩相B段。平面油层厚度和剩余可采储量等值线图分析,单井油气富集区产能大于1O×104t 的井主要是 SH1031、SH1026、SH1037、SH1106、SHW10 等井周边范围内;产能分布在小于10×104t区间的井有SH1041、SH1020、SH1009、SH1035等井周边范围内。油气主要集中在SH1034-SH1035-SH1040-SH1041以东的区域,最终优选SH1040井和SH1031井一带为进一步挖潜的有利区,SH1025井和SH1037井可补射孔。
[Abstract]:On the basis of previous researches on Carboniferous volcanic reservoirs in Shixi Oilfield, combined with the data of drilling, logging, logging, core analysis, testing and production testing, this paper applies geophysical techniques and geological methods through a variety of means. In order to carry out the study of Carboniferous reservoir and fluid identification in Shixi Oilfield, Carboniferous volcanic rocks in Shixi Oilfield are divided into explosive facies and overflow facies, in which the overflow facies is dominant. The lithology is zonal lava, agglomerate rock, breccia lava. Dense tuff is the main type of reservoir space, and the reservoir space types are matrix dissolved pore, filling dissolved pore in fracture, pore filling dissolved pore, dissolved pore between breccia and so on, which belong to fracture-pore type reservoir with strong heterogeneity of medium-high porosity and low permeability. The correlation between reservoir physical property and lithology is good, among which the mass rock and breccia lava have better physical properties, and have higher porosity and permeability, while strip lava has higher porosity and lower permeability, and the oil-bearing grade is fluorescent. The resistivity of logging curve increases with the increase of oil content, the natural potential shows positive difference in oil and gas, the natural potential of weathered clay layer shows negative anomaly, and the low resistivity baseline, Non-oil-gas display. Five methods are used to identify reservoir fluid properties, in which the resistivity and porosity intersection method is used to identify the oil, the water and dry layers are the best, the coincidence ratio is 80, and the normal probability distribution method and Rt/Rxo and RT intersection method are better for the identification of the reservoir and the water layer. The coincidence rate is 63.63; the porosity logging curve overlap method is better for identifying dry and water layers; the depth and shallow resistivity differential identification method is affected by many factors, so it is difficult to grasp well. Reservoir parameter logging interpretation model and fluid identification chart, It can be seen that the lower limit of porosity is 9, the permeability is 0.2mD, the lower limit of oil saturation is 450.In summary, based on the physical properties of volcanic reservoir in the study area, the relationship between four properties, the model of reservoir parameters, the lower limit of physical property, and the identification of single well fluid, The study of the correlation profile of the reservoir and the analysis of the production dynamic data show that the reservoir is mainly distributed in the lithofacies B section, and the plane reservoir thickness and the contour map of the remaining recoverable reserves are analyzed. The wells with productivity greater than 10 脳 104t in single well oil and gas accumulation area are mainly within the peripheral range of SH1031H1026 SH1037SHH106HW10, and the wells with productivity less than 10 脳 104t are located in the periphery of SH1041 H1020H1020H1009SH1035 and so on. The oil and gas are mainly concentrated in the area east of SH1034-SH1035-SH1040-SH1041, and the oil and gas are mainly located in the area east of SH1034-SH1035-SH1040-SH1041, and the oil and gas are mainly distributed in the vicinity of SH1041, SH1020, SH1009, SH1035 and so on. Finally, SH1040 well and SH1031 well are selected as favorable areas for further tapping potential. Well SH1025 and SH1037 well can make up perforation.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P618.13
【相似文献】
相关期刊论文 前10条
1 牛宝童;李导;胡晓丽;;流体识别因子提取中C的取值[J];内蒙古石油化工;2009年08期
2 贺振华;王栋;;扩展流体识别因子及应用[J];矿物岩石;2009年04期
3 许平;文晓涛;雷芬丽;贺振华;;高灵敏度流体识别因子研究[J];长江大学学报(自然科学版)理工卷;2010年03期
4 李杨;贺振华;黄德济;程刚建;宋洪勇;;流体识别因子试验分析及应用[J];石油物探;2010年06期
5 宁忠华;贺振华;黄德济;;基于地震资料的高灵敏度流体识别因子[J];石油物探;2006年03期
6 许辉群;桂志先;曾勇;;噪音背景下流体识别应用方法探讨[J];科学技术与工程;2013年18期
7 孔康乐;赵澎度;孟燕;;流体识别因子研究[J];中国石油和化工标准与质量;2013年10期
8 许平;雷芬丽;文晓涛;贺振华;;碳酸盐岩储层流体识别因子分析[J];油气地球物理;2010年04期
9 江伟;;垦71地区多波属性与流体识别的研究及应用[J];油气地球物理;2009年04期
10 王磊;王智伟;石亮亮;唐伟;张玲;刘冰;;地层测试器流体识别模块流体筒数值模拟[J];石油化工应用;2012年02期
相关会议论文 前4条
1 贺振华;王栋;黄德济;;扩展流体识别因子及应用[A];中国地球物理·2009[C];2009年
2 肖立志;;核磁共振在地层流体识别和定量评价中的应用研究[A];第十二届全国波谱学学术会议论文摘要集[C];2002年
3 张大海;谢月芳;;同时反演对岩性和流体识别的应用[A];加强地质工作促进社会经济和谐发展——2007年华东六省一市地学科技论坛论文集[C];2007年
4 肖丽;范晓敏;马宏宇;;GR-RD交会图法在碳酸盐岩储层流体识别中的应用研究[A];中国地球物理学会第22届年会论文集[C];2006年
相关博士学位论文 前4条
1 邹文;基于地震资料的流体识别技术研究[D];成都理工大学;2008年
2 郝前勇;岩石弹性参数反演与流体识别方法与应用[D];中国石油大学(华东);2013年
3 李鹏举;核磁共振T2谱反演及流体识别评价方法研究[D];东北石油大学;2010年
4 倪根生;致密气藏的储层特征与流体识别[D];成都理工大学;2011年
相关硕士学位论文 前10条
1 许迪;基于叠前数据反演的流体识别新方法[D];成都理工大学;2015年
2 郭越;碳酸盐岩储层测井流体识别方法研究[D];中国地质大学(北京);2013年
3 王学才;古龙南地区古693、大146区块流体识别方法研究[D];东北石油大学;2016年
4 毛凯兰;石西油田石炭系火山岩储层及流体识别研究[D];西南石油大学;2017年
5 沈洪涛;基于纵波资料的流体识别[D];成都理工大学;2007年
6 李国福;多参数储层预测及流体识别方法研究[D];成都理工大学;2011年
7 江伟;多参数流体识别方法及应用研究[D];成都理工大学;2010年
8 盖海洋;基于岩石物理的流体识别研究[D];中国石油大学;2009年
9 王栋;AVO分析与流体识别[D];成都理工大学;2009年
10 富会;查48区块高台子油层流体识别方法[D];东北石油大学;2014年
,本文编号:1581985
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1581985.html