黑龙江省水稻中砷分布及浸泡淘洗对砷残留量的研究
本文选题:稻谷 切入点:总砷 出处:《哈尔滨商业大学》2017年硕士论文 论文类型:学位论文
【摘要】:文中研究分析了采自黑龙江省50个地区50份稻谷样品,采样的根据《国家粮食安全中长期规划纲要(2008-2020)》和《黑龙江省千亿斤粮食生产能力建设规划》。本文以稻谷为研究对象,测定总砷及无机砷的残留量,并分析了土壤和灌溉水对水稻中砷残留量的影响。具体研究内容如下:(1)检测并分析黑龙江省50个地区的稻谷及其制品中总砷和无机砷含量发现:稻谷、糙米、精米样品中总砷含量范围为0.214-0.467mg/kg、0.096-0.216mg/kg、0.021-0.078mg/kg。稻谷、糙米、精米样品中无机砷含量范围为0.198-0.439mg/kg、0.076-0.196mg/kg、0.017-0.064mg/kg。所有稻谷、糙米、精米样品的总砷平均值含量为0.352mg/kg、0.128mg/kg、0.040mg/kg。所有稻谷、糙米、精米样品的无机砷平均值含量为0.327mg/kg、0.112mg/kg、0.032mg/kg。通过计算可知稻谷经砻谷后变成糙米总砷及无机砷的残留量为35.5%、34.2%,糙米经过碾米工序后变成精米总砷及无机砷的残留量为31.2%、28.6%。水稻在从全粒到糙米到转变为精米后,砷浓度值都在减少,水稻籽粒不同加工精度砷含量之间的关系为稻谷糙米精米。(2)根据不同地区稻谷中砷的污染程度,分别检测了该水稻生长环境中土壤和灌溉水的总砷的残留量。结果表示:农田的灌溉水中总砷的含量在0.336-0.702g/L,土壤中总砷的含量为0.811-0.952mg/kg。结合上条结果可知:稻谷中总砷含量的多少与土壤和灌溉水有一定的关系,即总砷含量越高的地方,土壤和灌溉水总砷的含量也越高,所以说环境污染导致砷的迁移被水稻根部所吸收,进而我们测得大米中总砷的含量较大。随着自然生态环境污染的日益加重,农田灌溉水和土壤中总砷的本底值不断的升高,大米中所具有的砷含量也一定升高,所以更应该加强控制环境污染所带来的危害。(3)大米经过淘洗实验得出:淘洗一次和两次大米总砷的残留量分别为62.8-70.5%、48.4-58.9%;淘洗一次和两次大米无机砷的残留量分别为65.0-74.4%、60.3-68.1.%。可知,大米经过淘洗的次数多砷残留量随之下降。大米浸泡实验中砷的残留量分别为:浸泡0.5小时后总砷和无机砷残留量为67.4%-94.8%、90.5%-98.2%;1小时后总砷和无机砷残留量为64.0%-94.9%、85.3%-95.1%;2小时后总砷和无机砷残留量为60.0%-92.6%、80.0%-92.0%;3 小时后总砷和无机砷残留量为 56.0%-89.8%、74.7%-88.3%;4小时后总砷和无机砷残留量为53.1%-86.6%、69.5%-84.7%;5小时后总砷残留量为49.7%-83.8%、63.2%-80.4%。随着浸泡时间的变长、大米中总砷及无机砷的含量也越来越低,说明有部分重金属砷已经迁移到了浸泡液中。
[Abstract]:In this paper, 50 rice samples collected from 50 regions of Heilongjiang Province were studied and analyzed according to the National medium and long term Program for Food Security (2008-2020) and the Construction Plan of Heilongjiang Province's 100 billion catties of Grain production capacity. The rice was taken as the research object in this paper. Determination of total arsenic and inorganic arsenic residues, The effects of soil and irrigation water on arsenic residue in rice were analyzed. The total arsenic content in the samples ranged from 0.214-0.467mg / kg 0.096-0.216mg / kg / kg ~ 0.021-0.078mg / kg / kg. The inorganic arsenic content in rice, brown rice and milled rice samples was 0.198-0.439 mg / kg 0.076-0.196 mg / kg / kg 0.064 mg / kg 路kg / kg. The average total arsenic content of all rice, rice and milled rice samples was 0.352 mg / kg 0.128 mg / kg / 0.040 mg / kg. All rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, brown rice, The average content of inorganic arsenic in milled rice samples was 0.327mg / kg 0.12mg 路kg ~ (-1) 路kg ~ (-1) 0.32 mg / kg 路kg ~ (-1). The results showed that the total arsenic and inorganic arsenic residues of brown rice turned into brown rice after rice hulling were 35.5mg / kg ~ 34.2, and the residual amounts of total arsenic and inorganic arsenic in milled rice were 31.2228.6%. After moving from full grain to brown rice to milled rice, Arsenic concentration is decreasing, and the relationship between arsenic content in different processing precision of rice grain is rice brown rice milled rice. 2) according to the degree of arsenic pollution in different regions of rice, The total arsenic residues in soil and irrigation water in this rice growing environment were determined respectively. The results show that the total arsenic content in irrigation water of farmland is 0.336-0.702g / L, and the total arsenic content in soil is 0.811-0.952 mg / kg 路kg.According to the above results, the total arsenic in paddy rice is found to be in the range of 0.336-0.702g / L. The amount of soil content is related to the soil and irrigation water. That is, where the total arsenic content is higher, the total arsenic content in soil and irrigation water is also higher, so environmental pollution causes arsenic migration to be absorbed by rice roots. With the increasing pollution of natural ecological environment, the background value of total arsenic in farmland irrigation water and soil increases continuously, and the content of arsenic in rice must also increase. Therefore, it is even more necessary to strengthen the control of the harm caused by environmental pollution. (3) after washing out rice, the results show that the residual amount of total arsenic in rice washed once and twice is 62.8-70.550.5 and 48.4-58.9, respectively; and the residual amount of inorganic arsenic in rice washed once and twice is 65.0-74.44.40.3- 68.1.1.The result shows that the residual amount of arsenic in rice is 65.0-74.44.44.44.44.40.The residual arsenic is 65.0-74.44.45%. The total arsenic and inorganic arsenic residues in the rice immersion test were 67.4 -94.8 and 90.5 -98.2% respectively. The total arsenic and inorganic arsenic residues in the rice immersion test were 64.0-94.95,85.3- 95.1 hours after 1 hour, and the total arsenic and inorganic arsenic residues were 67.4- 94.8. 8 and 90.5 -98.2. 2 hours later, the total arsenic and inorganic arsenic residues in the rice immersion test were 64.0 -94.9. 9. 5 and 95. 1 hours later, respectively, the total arsenic and inorganic arsenic residues in the rice immersion test were 67.4 -94.8. 8. 2 hours later. The total arsenic and inorganic arsenic residues were 60.0-92.60.80.0-92.0 in 3 hours and 56.0-89.8m in the range of 56.0-89.80.The total arsenic and inorganic arsenic residues were 53.1- 86.66.69.5- 84.7hs after 4 hours. The total arsenic residue was 49.7-83.8nil -83.80.The total arsenic remained was 49.7-83.8n- 80.40.The length of the total arsenic and inorganic arsenic remained was 49.7- 83.80.The length of the immersion time increased, and the total arsenic and inorganic arsenic remained in the range of 49.7- 83.83.2- 80.40.The total arsenic and inorganic arsenic residues were 53.1- 86.6- 84.745 hours later. The contents of total arsenic and inorganic arsenic in rice were lower and lower, indicating that some of the heavy metals arsenic had migrated to the soaking solution.
【学位授予单位】:哈尔滨商业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS210.7
【参考文献】
相关期刊论文 前10条
1 刘鹏;;绿色水稻营养价值解析[J];农业与技术;2014年05期
2 赵红波;许萍;潘雷明;金鑫;张奕宁;许荣年;;大米中无机砷测定方法的改进[J];食品科学;2014年14期
3 陈少波;余雯静;赵玉兰;;食品中砷形态分析及无机砷测定[J];农产品加工(学刊);2013年08期
4 汪光;李开明;吕永龙;任秀文;卢文洲;吴仁人;;食品烹调处理过程中砷的浓度、形态和生物可给性研究进展[J];生态毒理学报;2013年02期
5 姬中伟;黄桂东;毛健;傅健伟;;浸米时间对黄酒品质的影响[J];食品与机械;2013年01期
6 尚德荣;赵艳芳;郭莹莹;翟毓秀;宁劲松;盛晓风;张明;;食品中砷及砷化合物的食用安全性评价[J];中国渔业质量与标准;2012年04期
7 梁文君;梅春芬;陈洁;谢爱群;张禹红;;微波消解-ICP-MS测定酸角浸膏中的铅、砷、镉、铬[J];食品安全质量检测学报;2012年05期
8 何岩;于治宇;张徐;;银盐法测定稻谷中无机砷含量的不确定度评定[J];粮食储藏;2012年05期
9 李景岩;张爱君;;砷代谢与砷毒性作用机制的关系[J];中国地方病防治杂志;2011年05期
10 陈红梅;张滨;;ICP-MS法测定茶叶中铅、铬、镉、砷、铜等重金属元素[J];食品安全质量检测学报;2011年04期
相关硕士学位论文 前4条
1 黄亚涛;我国稻米中无机砷的污染分布研究及风险评估[D];中国农业科学院;2014年
2 孙昕炀;中国大米重金属水平分析及其健康风险评估[D];南京农业大学;2012年
3 高继庆;海藻中形态砷的分析及受加工工艺影响的研究[D];中国海洋大学;2008年
4 梁月香;砷在土壤中的转化及其生物效应[D];华中农业大学;2007年
,本文编号:1647942
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1647942.html