PSL3G采油树设备可行性测试及工艺技术研究
本文选题:采油树 切入点:气密封 出处:《湖北工业大学》2017年硕士论文
【摘要】:采油树设备是油气田开采的重要工具,依据API 6A技术要求,为了达到油气开采的压力要求,目前国内外采油树已从PSL1发展到了PSL4,PSL3以下的采油树只适合采油,而PSL3(3G)以上的采油树适合采油及采气,因此PSL3(3G)以上采油树的密封性能直接决定了其是否能顺利开采。本文主要阐述了通过运用谢宁(Shainin)原理分析方法,找出引起PSL3G采油树设备阀板阀座密封泄漏的根本原因,并通过优化零件的表面处理工艺改善阀板阀座的物理性能,从而解决采油树的泄露故障。具体内容如下:(1)通过采油树的结构分析以及各部分结构发生故障的统计分析,结果表明:采油树主要故障发生在平板闸阀上,并且故障比例达到了总故障发生次数的67.25%,而泄露故障在所有故障中占99%的比例,泄露故障主要分为外漏及内漏,外漏故障表现的比较明显,虽然内漏故障表现得没有外漏故障明显,但在采油树投入使用前首先要排除内漏隐患。(2)依据PSL3G采油树强度及密封性试验原则,对采油树进行强度及密封性试验,试验过程均为第一阶段的水压测试及第二阶段的气压测试。强度试验主要目的是为了排除外漏故障。密封性试验主要目的是为了排除内漏故障,进行试验时,对所有的平板闸阀进行测试,测试顺序为下主阀与清蜡阀外侧测试→下主阀与清蜡阀外侧测试→上主阀与翼阀外侧测试→上主阀与翼阀内侧测试。(3)运用谢宁(Shainin)原理分析方法,通过列出问题定义树形图(Green Y)及项目定义树形图,并且用成对比较技术创建了失效事件策略图,缩小了检测范围,接下来进行stage0、stage1、seage2三个阶段的组件搜索过程,搜索出PSL3G采油树设备产生泄露故障的部位为阀板及阀座。(4)分析泄露故障的原因,通过目测、工艺要求检测以及对阀板阀座承载压力的有限元分析,确定产品的选材是合格的,但是传统热处理方式引起了阀板阀座的弹性变形,导致了泄露故障的发生。通过使用高温QPQ处理技术进行工艺优化,使阀板阀座的硬化层深度大于40μm,最低硬度大于HRC50或HK542(努氏硬度),最大变形量控制在20μm的最大极限以内,从而满足了阀板阀座的使用要求。
[Abstract]:Oil production tree equipment is an important tool for oil and gas field production. According to API 6A technology requirement, in order to meet the pressure requirement of oil and gas production, the oil production tree has developed from PSL1 to the oil production tree below PSL4 / PSL3 at home and abroad, which is only suitable for oil production.The oil production tree above PSL3G) is suitable for oil production and gas recovery, so the sealing performance of the tree above PSL3 / 3G directly determines whether or not it can be exploited smoothly.In this paper, the fundamental cause of seal leakage of valve plate valve seat in PSL3G oil production tree equipment is found by using the analysis method of Xie Ning-Shain principle, and the physical properties of valve plate valve seat are improved by optimizing the surface treatment technology of parts.In order to solve the oil tree leakage fault.The concrete contents are as follows: (1) through the structural analysis of the oil production tree and the statistical analysis of the various structural failures, the results show that the main fault of the oil recovery tree occurs on the flat gate valve.And the proportion of faults reached 67.25% of the total number of faults, and the leakage fault accounted for 99% of all the faults. The leakage faults are mainly divided into external leakage and internal leakage, the performance of external leakage fault is obvious.Although the internal leakage fault shows no obvious external leakage fault, before the oil recovery tree is put into use, the hidden danger of internal leakage should be removed first. (2) according to the principle of PSL3G oil recovery tree strength and sealing test, the strength and sealing test of the oil recovery tree is carried out.The test process is the first stage water pressure test and the second stage air pressure test.The main purpose of strength test is to eliminate leakage.The main purpose of the sealing test is to eliminate internal leakage and to test all the flat gate valves during the test.The order of test is lower main valve and wax cleaning valve outer test / lower main valve and wax cleaning valve outer test upper main valve and wing valve outer test upper main valve and wing valve inner test.By listing the problem definition tree (Green Y) and the item definition tree, and using the pairwise comparison technique, the failure event strategy graph is created, which reduces the detection scope. Then, the three-stage component search process of stage0 / stage1seage2 is carried out.The leakage fault of PSL3G oil recovery tree equipment is found to be valve plate and valve seat. The reason of leakage fault is analyzed. Through visual measurement, process requirement detection and finite element analysis of valve plate seat bearing pressure, it is determined that the material selection of the product is qualified.But the traditional heat treatment causes the elastic deformation of the valve plate seat, resulting in leakage failure.By using high temperature QPQ treatment technology to optimize the process, the hardened layer depth of the valve plate seat is greater than 40 渭 m, the minimum hardness is greater than HRC50 or HK542 (Knoop hardness, the maximum deformation is controlled within the maximum limit of 20 渭 m),Thus meets the valve plate valve seat use request.
【学位授予单位】:湖北工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE93
【相似文献】
相关期刊论文 前10条
1 周炜;;采油树常见的故障与处理方法[J];科技传播;2013年10期
2 李循迹,周建东,何钧;牙哈采油树腐蚀检查分析及对策[J];石油矿场机械;2003年01期
3 谢华;张伟国;刘秀全;陈国明;畅元江;;海上油气井采油树升高机理及其计算方法[J];天然气工业;2013年04期
4 耿涛;;胜利油田海上双防采油树设计与安装[J];油气田地面工程;2014年02期
5 刘昌领;罗晓兰;叶道辉;段梦兰;;深水采油树过油管道热固耦合分析[J];机械与电子;2013年12期
6 沈丹丹;朱宏武;丁矿;张金亚;张悠江;;水下卧式采油树内部环空通道的流动特性分析[J];石油机械;2014年02期
7 赵宏林;刘振鹏;段梦兰;朱高磊;唐彪;;水下卧式采油树顶部阻塞器下放安装过程研究[J];石油矿场机械;2013年11期
8 李哲;马金良;李金凤;王大利;高立彬;;井口采油树现场试压工具简介及工艺研究[J];油气井测试;2014年04期
9 秦蕊;谷玉洪;罗晓兰;李清平;段梦兰;刘国恒;;水下采油树设计影响参数分析[J];海洋工程;2012年02期
10 林秀娟;肖文生;王鸿雁;;深水采油树下放过程钻柱力学分析[J];中国石油大学学报(自然科学版);2011年05期
相关会议论文 前3条
1 王东宝;;一种新型简单的采油树[A];2008年度海洋工程学术会议论文集[C];2008年
2 张怡;康永田;叶道辉;段梦兰;王军;;水下采油树法兰密封连接的热力学模型[A];第十五届中国海洋(岸)工程学术讨论会论文集(上)[C];2011年
3 张啸斐;王东宝;;水下采油树界面研究(英文)[A];2012年中国造船工程学会学术论文集[C];2012年
相关硕士学位论文 前4条
1 李博;水下采油树的结构设计及仿真分析[D];东北石油大学;2016年
2 袁冲;水下采油树安装及力学研究[D];西南石油大学;2016年
3 汤丽君;PSL3G采油树设备可行性测试及工艺技术研究[D];湖北工业大学;2017年
4 王涛;深水采油树下放安装关键技术研究[D];中国石油大学(华东);2014年
,本文编号:1707094
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1707094.html