采后BTH处理及挑战接种对苹果果实抗青霉病的诱导
本文选题:苹果 + 真菌 ; 参考:《甘肃农业大学》2017年硕士论文
【摘要】:由扩展青霉(Penicillium expansum)引起的青霉病是导致苹果采后损失的重要病害。本文以成熟“红富士”苹果为试材,用100mg/L BTH处理24h后,再接种P.expansum。研究处理对损伤接种苹果青霉病的控制效果,观察处理及挑战接种对果实细胞及细胞器的影响,分析果实皮下细胞中ROS的积累,测定能量代谢、活性氧代谢和苯丙烷代谢相关酶活性及产物含量。结果表明:1.BTH处理可显著降低损伤接种果实的病斑面积,诱导了果实PAL活性,提高了总酚、类黄酮和木质素含量的积累。挑战接种可进一步诱导BTH处理者的PAL活性,显著提高了总酚、类黄酮和木质素积累。虽然挑战接种也提高了对照果实的上述抗性指标,但持续的时间和增加的强度明显低于处理果实。2.BTH处理显著提高了果实的ATP和ADP含量,以及EC水平,提高了SDH、CCO和Ca~(2+)-ATPase活性。挑战接种可进一步诱导处理果实的SDH、CCO、H~+-ATPase和Ca~(2+)-ATPase活性,增加处理果实的ATP和ADP含量,以及EC水平。虽然挑战接种也提高了对照果实的上述抗性指标,但其持续时间和增加强度明显低于处理果实。此外,处理保持了细胞中线粒体数量的稳定,较好的维持了线粒体结构完整。3.BTH处理降低了果实细胞膜透率及MDA含量,维持了细胞膜的完整性。提高了NOX、SOD、POD和PPO活性,抑制了CAT和PAX活性。挑战接种可进一步提高NOX、SOD、POD和PPO活性,抑制CAT和PAX活性。虽然挑战也可提高对照果实上述抗性指标,但增加的强度和持续的时间明显低于处理果实。4.BTH处理诱导了果实的ROS爆发,同时提高了O_2~-.产生速率和H_2O_2积累,挑战接种可进一步诱导处理果实皮下细胞中ROS积累,提高了O_2~-.产生速率和H_2O_2含量。虽然挑战也可提高对照果实的ROS积累,但ROS累积的强度明显低于处理果实。综上所述,采后BTH处理可显著抑制损伤接种苹果青霉病的病斑面积,其抑制效果与促进能量代谢相关酶活性,提高果实组织的能量水平;调节活性氧代谢代谢相关酶活性,增加ROS含量;诱导了苯丙烷代谢,促进酚类和类黄酮物质积累等密切相关。
[Abstract]:Penicillium expansuma caused by Penicillium expansum is an important disease of apple postharvest loss.The mature "Red Fuji" apple was treated with 100mg/L BTH for 24 hours, then inoculated with P. expansum.To study the control effect of injury and inoculation on apple penicilliosis, observe the effects of treatment and challenge inoculation on fruit cells and organelles, analyze the accumulation of ROS in fruit subcutaneous cells, and determine the energy metabolism.Enzyme activity and product content related to active oxygen metabolism and phenylpropane metabolism.The results showed that 1. BTH treatment could significantly reduce the diseased spot area, induce the activity of PAL and increase the accumulation of total phenol, flavonoid and lignin.Challenge inoculation could further induce the PAL activity of BTH treatment, and increase the accumulation of total phenol, flavonoids and lignin.Although challenge inoculation also increased the resistance of the control fruit, the duration and intensity of the treatment were significantly lower than that of the treatment fruit .2.BTH treatment significantly increased the content of ATP and ADP, the EC level, and the activity of SDH CCO and Ca~(2 + -ATPase.Challenge inoculation could further induce the activities of SDHCCOH- ATPase and Ca~(2 + -ATPase, increase the contents of ATP and ADP, and the level of EC.Although challenge inoculation also increased the resistance index of the control fruit, its duration and increasing intensity were significantly lower than that of the treated fruit.In addition, the treatment maintained the stability of the number of mitochondria in the cells, maintained the integrity of mitochondria structure. 3. BTH treatment decreased the cell membrane permeability and MDA content, and maintained the integrity of the cell membrane.The activities of POD and PPO were increased and the activities of CAT and PAX were inhibited.Challenge inoculation could further increase the activities of POD and PPO and inhibit the activities of CAT and PAX.Although challenge could also increase the resistance of the control fruit, the intensity and duration of the increase were significantly lower than that of the treatment fruit. 4. BTH treatment induced the ROS outbreak of the fruit, and increased the O2C-.The rate of production and the accumulation of H_2O_2, challenge inoculation could further induce the accumulation of ROS in fruit subcutaneous cells, and increase the accumulation of ROS in fruit subcutaneous cells.Production rate and H_2O_2 content.Although challenge also increased the ROS accumulation of the control fruit, the intensity of ROS accumulation was significantly lower than that of the treated fruit.To sum up, postharvest BTH treatment could significantly inhibit the spot area of damaged and inoculated apple penicillium, its inhibitory effect and the activity of enzymes related to promoting energy metabolism, improving the energy level of fruit tissue, regulating the activity of enzymes related to metabolism of active oxygen species,Increasing the content of ROS, inducing phenylpropane metabolism and promoting the accumulation of phenols and flavonoids were closely related.
【学位授予单位】:甘肃农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS255.3
【参考文献】
相关期刊论文 前10条
1 李文文;吴光斌;陈发河;;秋水仙碱处理对采后莲雾果实在冷藏期间品质、活性氧代谢和能量代谢的影响[J];食品科学;2016年16期
2 纪翔宇;刘翔宇;张志翔;王若涵;;采用Extracellular Flux Analyzer方法测定植物线粒体能量代谢[J];中国农学通报;2015年21期
3 葛永红;李灿婴;朱丹实;董柏余;兰琳;;采后BTH处理对苹果果实苯丙烷代谢和病程相关蛋白积累的增强作用[J];食品工业科技;2015年05期
4 陈发河;张美姿;吴光斌;;NO处理延缓采后枇杷果实木质化劣变及其与能量代谢的关系[J];中国农业科学;2014年12期
5 程雷;潘磊庆;苏晶;詹歌;赵秀洁;屠康;;两种酵母对“红富士”苹果采后病害的控制[J];食品工业科技;2014年15期
6 林建城;林河通;郑红;叶登云;林艺芬;;采后枇杷果皮细胞壁代谢和果实超微结构与贮藏性的关系[J];热带作物学报;2014年01期
7 董宇;赵倩;关军锋;高曼曼;李义红;;1-MCP对‘早魁’梨采后成熟软化、叶绿素含量和果皮结构的影响[J];河北农业大学学报;2013年06期
8 莫亿伟;金文龙;刘锴栋;;高效液相色谱法测定几种热带水果ATP、ADP和AMP含量[J];果树学报;2013年06期
9 侯媛媛;朱璇;韩江;徐卉蔚;;水杨酸处理对杏果实冷害及组织结构的影响[J];食品科技;2013年10期
10 刘瑾瑾;李永才;刘昌宁;;采后纳米氧化锌对苹果黑斑病和青霉病的控制[J];食品工业科技;2014年04期
,本文编号:1740280
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1740280.html