当前位置:主页 > 硕博论文 > 工程硕士论文 >

印刷质量的图像检测技术研究

发布时间:2018-05-03 12:29

  本文选题:机器视觉 + 图像处理 ; 参考:《华东理工大学》2017年硕士论文


【摘要】:在制造业转型升级背景下,印刷业面临传统技术改造的难题。质量检测作为印刷生产过程中的必要环节,其检测技术的创新与发展对于传统印刷业变革具有重要的现实意义。为了有效提高印刷质量检测的自动化程度,本文在机器视觉和数字图像处理的基础上,综合运用光源照明、传感器、光学成像、软件开发等知识,研究一种印刷质量的图像检测技术。通过采用模块化设计开发印刷质量检测系统,为解决实际印刷过程中存在的检测效率低、稳定性差等问题提供了可行性方案。基于系统组成和算法设计两个方向,本文详细阐述了印刷质量的图像检测技术在包装印刷领域的应用和系统实现。本课题的主要研究内容如下:(1)针对实际生产需要,通过分析机器视觉原理及其应用,合理确定系统硬件设备选型方案,设计了一套由传送带、LED光源、CCD工业相机、光电开关、旋转编码器和PLC控制器组成的印刷图像采集装置。在采集印刷品图像时,系统利用Pylon Viewer程序驱动相机自动完成对印刷品准确拍摄。针对外界光照对图像采集过程的影响,本装置对相机和光源进行密封操作,从而保证后续图像处理时能够获得高质量的印刷图像。(2)为确保系统顺利实现印刷图像自动检测过程,根据印刷检测的技术要求,本文提出了一系列印刷图像处理识别相关算法,主要包括图像预处理、图像配准和缺陷分类识别三大类。在印刷图像预处理过程中,本文对图像灰度化、图像增强、图像分割等关键算法详细介绍,为后续检测结果的准确性提供保障。根据不同类型印刷品特点,本文提出两种基于ROI模板及基于Hough和Fourier变换的印刷图像配准算法,为进一步缺陷识别奠定良好的基础。针对检测系统的功能需求,本文设计缺陷目标提取与分类识别算法,同时通过改进多类支持向量机完成印刷缺陷的自动识别与分类。最后,本文基于C++编程语言,利用Visual Studio 2013开发工具,综合运用编程和软件项目开发知识,实现印刷质量检测系统可视化平台。
[Abstract]:Under the background of manufacturing industry transformation and upgrading, the printing industry faces the difficult problem of traditional technology transformation. As a necessary link in the process of printing production, the innovation and development of quality inspection technology is of great practical significance to the traditional printing industry. In order to improve the automation of printing quality inspection effectively, this paper, on the basis of machine vision and digital image processing, synthesizes the knowledge of light source lighting, sensor, optical imaging, software development, etc. An image detection technique for printing quality is studied. A printing quality inspection system is developed by modular design, which provides a feasible scheme for solving the problems of low detection efficiency and poor stability in the actual printing process. Based on the two directions of system composition and algorithm design, this paper describes the application and system implementation of printing quality image detection technology in the field of packaging and printing in detail. The main research contents of this subject are as follows: (1) according to the actual production needs, through analyzing the principle and application of machine vision, reasonably determining the selection scheme of the hardware equipment of the system, designing a set of CCD industrial camera and optoelectronic switch with the LED light source of the conveyor belt. The printing image acquisition device composed of rotary encoder and PLC controller. When collecting print image, the system uses Pylon Viewer program to drive the camera to automatically complete the accurate shooting of printed matter. In view of the influence of outside illumination on the image acquisition process, the device seals the camera and light source to ensure that high quality printing image can be obtained in the subsequent image processing. According to the technical requirements of printing detection, this paper proposes a series of printing image processing recognition algorithms, including image preprocessing, image registration and defect classification recognition. In the process of printing image preprocessing, the key algorithms such as grayscale image, image enhancement, image segmentation and so on are introduced in detail in order to guarantee the accuracy of the following detection results. According to the characteristics of different types of printing materials, this paper presents two kinds of printing image registration algorithms based on ROI template and Hough and Fourier transform, which lay a good foundation for further defect recognition. In order to meet the functional requirements of the detection system, this paper designs an algorithm for the extraction and classification of defect targets. At the same time, an improved multi-class support vector machine (SVM) is used to realize the automatic recognition and classification of printing defects. Finally, based on C programming language and Visual Studio 2013 development tools, the visual platform of printing quality inspection system is realized by using the knowledge of programming and software project development.
【学位授予单位】:华东理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS807;TP391.41

【相似文献】

相关期刊论文 前3条

1 张玉荣;陈赛赛;周显青;;小麦图像检测技术研究进展[J];中国粮油学报;2014年04期

2 李成贵,王洪祥;几何量图像检测技术及其应用[J];工业计量;1999年04期

3 ;[J];;年期

相关会议论文 前2条

1 张良;苏俊宏;杨利红;徐均琪;;微小喷嘴零件内孔图像检测技术研究[A];第十八届十三省市光学学术会议论文集[C];2010年

2 周鹏;杨向波;朱虹;季瑞瑞;;基于图像检测技术的三极管计数算法[A];第十一届中国体视学与图像分析学术会议论文集[C];2006年

相关硕士学位论文 前10条

1 王刚;基于图像检测的双绞线绕距测量方法研究[D];宁波大学;2015年

2 徐一夫;基于深度学习的印刷电路板要素CT图像检测技术研究[D];解放军信息工程大学;2015年

3 蔺博宇;近似重复图像检测技术及其应用研究[D];解放军信息工程大学;2012年

4 徐德义;回转类工件轮廓图像检测技术的研究[D];安徽工业大学;2008年

5 孙华纾;视觉图像检测技术教学实验平台的研制[D];天津大学;2009年

6 张娇;交通标志和信号灯图像检测技术研究[D];南京理工大学;2011年

7 何江远;基于FPGA的视频图像检测技术的研究与应用[D];东华大学;2007年

8 祝长锋;基于FPGA的实时图像检测技术的研究[D];江苏大学;2008年

9 张晓林;货车走行部弹簧缺损图像检测技术研究[D];西南交通大学;2012年

10 曹,

本文编号:1838486


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1838486.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5136a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com