大型立式拱顶储罐结构应力分析与部件结构尺寸优化
本文选题:低压储罐 + SolidWorks参数化建模 ; 参考:《新疆大学》2017年硕士论文
【摘要】:随着储罐大型化与集中化的发展,储罐优化设计越来越受到化工类企业的重视。本文针对常见大型立式储罐,以储罐材料最省为目标,建立了储罐壳体外形尺寸的优化设计目标函数,利用MATLAB软件对模型进行求解计算,得到了最佳外形尺寸,计算了对应的尺寸(V-D-t)算图。同时利用优化值与国标图集推荐值对同一公称体积下储罐耗材量进行比较分析。比较分析后发现当V2000m3时,优化值相比较推荐值储罐材料节省了7.64%;当V2000m3时,储罐材料节省了13.82%。利用建立的定体积下储罐最佳外形尺寸工程算图,结合标准SH/T 3167完成了100-10000m3系列储罐的结构设计。并在三维建模软件SolidWorks中运用宏录制语言,录制并编辑完成了储罐拱顶与罐壁的参数化建模,完成了对应部件可视化窗口的设计。应用ANSYS Workbench有限元分析软件中的静力学分析模块,对储罐进行静力学有限元分析,并在储罐拱顶、承压环及罐壁上设置数据提取路径,提取并分析了设置路径位置的受力特征曲线。发现从拱顶和承压环的焊接位置处到距离拱顶中心0.8R处,拱顶快速发生变形并且变形量在0.8R处达到最大,而拱顶应力变化特征与此相反;承压环顶板应力值从顶板最前端开始就基本保持不变,直到与支撑板相互焊接的位置时应力才发生突变达到最大值;储罐总体罐壁变形趋势与罐壁应力分布趋势情况基本相同,都是由上到下逐渐增长,且都在最底层罐壁处达到最大,其中变形位移为5.78mm,最大应力为103.5MPa;在最底层罐壁处达到最小值,其值都趋于0。利用储罐特征曲线规律结合强度判定理论对储罐主要部件强度进行判定,得出了储罐各主要部件(拱顶、承压环及罐壁)还可以进行优化的结论。再以储罐各部件质量最小为目标,建立了储罐主要部件壁厚尺寸的优化设计目标函数,利用ANSYS Workbench软件中的Response Surface Optimization(优化响应)模块对目标进行优化设计计算,得到了储罐各主要部件满足约束条件的最佳值。同时利用优化值与常规设计值对同一公称体积下储罐各主要部件耗材量进行了比较分析。分析发现优化后拱顶耗材平均节省了12.4%,承压环耗材平均节省了39.3%,罐壁耗材平均节省了9.8%。其中节省最明显的是承压环部分。
[Abstract]:With the development of large-scale and centralized storage tanks, more and more attention has been paid to the optimization design of storage tanks. In this paper, the optimal design objective function of the shell shape size of the tank is established for the purpose of saving the most material for the common large vertical storage tank. The model is solved and calculated by using MATLAB software, and the optimum shape size is obtained. The corresponding dimensions of V-D-t) are calculated. At the same time, the optimal value and the recommended value of the national standard map set are used to compare and analyze the storage tank consumption under the same nominal volume. After comparison and analysis, it is found that when V2000m3, the optimized value saves 7.64% compared with the recommended value, and when V2000m3, the tank material saves 13.82%. The structure design of 100-10000m3 series storage tank is completed by using the engineering calculation drawing of the optimal shape and size of the storage tank under constant volume and combining with the standard SH/T 3167. The parametric modeling of the dome and the wall of the tank is completed by using the macro recording language in the 3D modeling software SolidWorks, and the visual window of the corresponding parts is designed. The statics finite element analysis module of the ANSYS Workbench finite element analysis software is used to analyze the statics of the tank, and the data extraction path is set up on the tank vault, pressure ring and tank wall. The stress characteristic curve of setting path position is extracted and analyzed. It is found that from the welding position of the vault and pressure bearing ring to the distance of 0.8R from the center of the vault, the deformation of the vault rapidly occurs and the deformation reaches the maximum at 0.8R, while the stress changes of the vault are opposite. The stress value of pressure-bearing ring roof remains basically unchanged from the front end of roof, until the position of welding with support plate, the stress suddenly reaches the maximum value, and the deformation trend of tank wall is basically the same as the stress distribution trend of tank wall. The deformation displacement is 5.78mm, the maximum stress is 103.5MPa, and the minimum value is 0 at the lowest tank wall. Based on the characteristic curve law of storage tank and the theory of strength judgment, it is concluded that the main components of storage tank (vault, pressure ring and tank wall) can be optimized. Then the objective function of the optimization design of the wall thickness of the main parts of the tank is established with the aim of minimizing the quality of each component of the tank, and the optimization design is calculated by using the Response Surface Optimization( optimization response module in the ANSYS Workbench software. The optimum value of the main components of the tank satisfying the constraint conditions is obtained. At the same time, the consumption of the main parts of the tank under the same nominal volume is compared and analyzed by using the optimized value and the conventional design value. It is found that after optimization, the dome consumables are averagely saved 12.4%, the pressure ring consumables are saved 39.3%, and the tank wall consumables are saved 9.8% on average. One of the most significant savings is the pressure ring part.
【学位授予单位】:新疆大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE972
【相似文献】
相关期刊论文 前10条
1 刘焕桥,陶锦娟;应用立式罐罐壁平均温度计算式的建议[J];油气储运;2000年01期
2 赵丽新,刘丽川,张连友,黄磊,殷爱民,孙鑫;洞库储罐壁局部失稳分析[J];后勤工程学院学报;2004年03期
3 武铜柱;立式圆筒形储罐罐壁强度计算比较及分析[J];石油化工设备技术;2004年05期
4 王元;;大型罐罐壁应力计算及设计[J];天然气工业;1987年02期
5 陈丽娜;;浅析储罐及其罐壁设计方法[J];化学工程与装备;2009年10期
6 刘鎏;刘丽川;周玉君;孙松杰;刘正凡;;一种基于余弦定理罐壁变形测量的新方法[J];后勤工程学院学报;2010年02期
7 张明化;油罐罐壁腐蚀原因分析与对策[J];天然气与石油;2004年02期
8 杨志波;计静;;不同充液下储罐罐壁静力分析与对比[J];低温建筑技术;2012年04期
9 ;小氮肥厂碳化罐壁厚测试记录[J];化学工程与装备;1977年04期
10 吴龙平;明斐卿;付丽;王云;唐颖浩;;钢制焊接油罐设计规范中罐壁厚度的计算[J];油气储运;2013年10期
相关硕士学位论文 前10条
1 侯衍鹏;大型LNG储罐结构优化及研究[D];青岛科技大学;2015年
2 李健铭;大型立式拱顶储罐结构应力分析与部件结构尺寸优化[D];新疆大学;2017年
3 杨立才;大型石油储罐罐壁强度与稳定性计算方法研究[D];浙江大学;2013年
4 田晓雪;LNG储罐在冲击荷载作用下的受力分析[D];东北石油大学;2011年
5 张钊;LNG泄漏时外罐壁传热特性及地震响应研究[D];东北石油大学;2012年
6 黄兢;三向地震激励下LNG储罐外罐动响应分析[D];东北石油大学;2012年
7 葛颂;大型立式储液罐抗震分析的数值模拟研究[D];浙江大学;2006年
8 张营;大型全容式LNG储罐地震响应数值模拟研究[D];东北石油大学;2011年
9 许云凤;大型LNG低温储罐的安全性数值分析[D];西安石油大学;2011年
10 赵晓磊;15万立方米浮放储罐静动力数值分析[D];大庆石油学院;2009年
,本文编号:1883220
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/1883220.html