基于遗传算法对梭车转向机构的优化
本文选题:梭车 + 转向机构 ; 参考:《太原理工大学》2017年硕士论文
【摘要】:无轨胶轮梭车作为一种重要的辅助运输设备,它工作在连续性采煤机之后,往返于连续性采煤机和破碎机之间,运输连续性采煤机采集下来的煤块并将其卸载至破碎机的料斗内。无轨胶轮梭车在矿井下运行时需要在巷道中进行转向运动,此时转向机构发挥着重要的作用,在转向过程中要求梭车能够具有更小的转弯半径和转向阻力矩。目前对转向机构的研究大多数以转向机构中从动转向轮的实际转向角度和理论上的期望转向角度之间的误差最小作为目标函数来进行优化,而对转向机构的转弯半径最小和转向阻力矩最小两个目标函数同时进行优化设计并没有过多的研究。因为遗传算法相比于其他优化方法有很多优点,所以本文使用遗传算法以无轨胶轮梭车转向机构的主销中心距和车轮的极限转向角度为优化参数,以实现转向时无轨胶轮梭车受到的阻力矩和转弯半径最小为优化目标来完成优化设计。本课题对TY9FB型梭车(以下简称梭车)的转向机构进行了以下分析和研究:1.创建了梭车转向机构的数学模型及优化设计所需的目标函数。首先,分析了梭车的转向机构在转向过程中的运行原理。接着,按照转向时转向阻力矩和转弯半径的分析图,建立了转向阻力矩和转弯半径的数学模型,并分析了影响因素为主销中心距和转向极限角度。最后,以转向机构的主销中心距和外侧车轮的极限角度为优化参数,以转向阻力矩和转弯半径最小为优化目标,创建了优化目标函数。2.对目标函数进行了优化计算。首先,充分了解了遗传算法的工作原理;然后,使用matlab遗传算法箱对目标函数进行了优化计算,得出了目标函数的最优值及对应的优化参数值,并对优化前后的转向机构结构参数进行了对比。3.建立了梭车的虚拟样机模型。按照委托单位所提供的机构尺寸,运用ugnx7.0软件创建了优化前的梭车模型,根据遗传算法优化后转向机构的参数尺寸创建了优化后的梭车模型。然后将创建好的ug模型文件导入到adams软件中,并在模型中施加质量,添加车轮、路面以及运动约束、接触等,创建了优化前和优化后梭车的虚拟样机模型。4.对优化前和优化后梭车的虚拟样机模型进行了仿真和结果分析。首先,在adams中通过原地转向仿真得到了优化前和优化后梭车原地转向状态下的阻力矩曲线图,并将转向阻力矩的仿真值和计算得到的理论值进行了比较分析。然后,通过运动状态下进行转向仿真得到了优化前和优化后梭车的转弯半径和转向时受到的阻力矩的仿真曲线图,并把优化前和优化后的结果数据进行了比较分析。5.对优化前和优化后梭车转向机构的横拉杆受力后的应力和变形量进行了有限元分析。因为横拉杆在转向机构中传递力与运动,所以对优化前和优化后横拉杆的应力和变形量进行了有限元分析,并把优化前和优化后横拉杆的最大应力和最大变形量进行了分析对比。本课题运用了遗传算法这种高效的优化设计方法,并且结合了ug建模软件和ADAMS仿真分析软件,对梭车转向时的阻力矩和转弯半径进行了优化,使得梭车在转向时具有更小的转弯半径和转向阻力矩,从而提高了梭车的机动性和操控性。高效的优化方法和建模仿真软件的使用弥补了传统优化设计研发成本高和周期长等缺点,并且为转向机构的转弯半径和转向阻力矩优化提供了一种新的方法和方向。
[Abstract]:As an important auxiliary transportation equipment, the trackless rubber wheel shuttle works after a continuous shearer and goes back and forth between the continuous shearer and the crusher to transport the coal blocks collected by the continuous shearer and unload it into the hopper of the crusher. The trackless rubber wheel shuttle bus needs to be turned in the roadway when it runs under the mine. The steering mechanism plays an important role at this time. In the process of steering, the shuttle car is required to have smaller turning radius and steering resistance moment. At present, most of the research on steering mechanism is based on the actual steering angle of the steering wheel in the steering mechanism and the minimum error between the theoretical expected steering angles as the objective function. The optimization design is not too much research on the minimum turning radius of the steering mechanism and the minimum two objective functions of the steering resistance torque. Because the genetic algorithm has many advantages compared with other optimization methods, the genetic algorithm is used in this paper to take the main pin center distance and the wheel of the steering mechanism of the trackless rubber wheel spindle. The ultimate steering angle is optimized to optimize the design of the steering mechanism of the trackless wheel shuttle bus with the minimum turning radius and the minimum turning radius. The following analysis and research are carried out on the steering mechanism of the TY9FB type shuttle bus (hereinafter referred to as the shuttle vehicle): 1. the mathematical model and optimization design of the shuttle steering mechanism are created. First, the operating principle of the steering mechanism of the shuttle is analyzed. Then, the mathematical model of the steering resistance moment and the turning radius is established according to the analysis diagram of the steering resistance moment and the turning radius, and the main pin center distance and the steering limit angle are analyzed. Finally, the steering mechanism is used. The ultimate angle of the main pin center distance and the lateral wheel is optimized. The optimization objective function.2. is created to optimize the target function. First, the working principle of the genetic algorithm is fully understood. Then, the matlab genetic algorithm box is used to optimize the target function. The optimal value of the objective function and the corresponding optimum parameter value are obtained. The virtual prototype model of the shuttle car is established by comparing the structure parameters of the steering mechanism before and after the optimization. According to the organization size provided by the principal unit, the shuttle car model before the optimization is created by using the ugnx7.0 software, and the.3. is optimized according to the genetic algorithm. The optimized shuttle car model is created to the parameters of the mechanism. Then the created UG model files are introduced into the ADAMS software, and the quality is applied in the model, the wheels, the pavement and the movement constraints, contact and so on are added. The virtual prototyping of the optimized and optimized shuttle car is created by the virtual prototype model.4. of the optimized and optimized shuttle car. The simulation and result analysis are carried out in the model. First, in ADAMS, the resistance moment curves under the original and optimized turning state of the shuttle car are obtained by the original and optimized steering simulation, and the simulation values of the steering resistance moment are compared with the calculated values. Then, the steering simulation is obtained through the motion state. The simulation curves of the turning radius and the resistance moment of the shuttle vehicle before and after the optimization are simulated, and the results of the results before and after the optimization are compared and analyzed by.5.. The finite element analysis is made on the stress and deformation of the cross rod in the steering mechanism of the shuttle vehicle before and after the optimization, because the cross rod is passed in the steering mechanism. The finite element analysis of the stress and deformation of the horizontal rod before and after the optimization is carried out, and the maximum stress and maximum deformation of the horizontal bar are analyzed and compared. The high efficient optimization design method of the genetic algorithm is used in this project, and the UG modeling software and the ADAMS simulation are combined. The analysis software is used to optimize the resistance moment and turning radius of the shuttle steering, which makes the shuttle car have smaller turning radius and steering resistance moment, thus improving the maneuverability and maneuverability of the shuttle. The efficient optimization method and the use of modeling and simulation software make up for the high cost and the long period of the traditional optimization design. It also provides a new method and direction for the optimization of turning radius and steering resistance moment of steering mechanism.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD525
【参考文献】
相关期刊论文 前10条
1 郭年琴;吴永兴;郑浩龙;袁康;;基于遗传算法梭车优化设计[J];煤矿机械;2015年01期
2 张辉;黄伟;;基于Matlab的转向梯形机构优化设计[J];科协论坛(下半月);2013年12期
3 史向坤;王健;;遗传算法在机械优化设计中的应用价值分析[J];科技风;2012年08期
4 王勇;;基于Matlable语言的梯形转向机构优化[J];起重运输机械;2011年08期
5 王涛;;转向四连杆机构的集成优化设计[J];拖拉机与农用运输车;2009年02期
6 薄瑞峰;李瑞琴;刘昕明;;轮式车辆转向机构的遗传算法优化设计[J];中北大学学报(自然科学版);2009年02期
7 俞国燕;王筱珍;;改进遗传算法的应用研究[J];机械制造;2007年05期
8 孙奇涵;董恩国;张蕾;高淑睿;;转向四连杆机构的参数分析及优化设计[J];辽宁工程技术大学学报;2007年02期
9 徐小龙,王文国;遗传算法的原理与应用[J];沿海企业与科技;2005年05期
10 李华昌,谢淑兰,易忠胜;遗传算法的原理与应用[J];矿冶;2005年01期
相关硕士学位论文 前6条
1 师东波;WC5型自卸式车辆转向系统的优化设计[D];太原理工大学;2016年
2 李琳娜;矿用铲运机全液压转向系统机液联合仿真及优化设计[D];太原理工大学;2016年
3 邢哲;煤矿井下整体式无轨胶轮车转向机构运动研究[D];武汉理工大学;2013年
4 王镇乾;梭车转向四连杆机构的分析与优化设计[D];太原理工大学;2012年
5 符亮;汽车转向机构的特性研究[D];重庆理工大学;2012年
6 张永辉;汽车电动助力转向系统特性仿真研究[D];长安大学;2009年
,本文编号:2088059
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/2088059.html