输送带纵向撕裂一体化双目视觉检测方法研究
[Abstract]:Conveyor is an important transportation tool in modern mining industry. In coal transportation, coal gangue, metal materials and other hard materials are often mixed in coal, which may lead to longitudinal tearing of conveyor belt. Such sudden accidents usually lead to the stoppage of mining equipment and production, resulting in huge economic losses. Therefore, we need real-time, reliable detection of belt longitudinal tear. In recent years, because machine vision can improve detection efficiency and precision, vision detection has become an important research direction in conveyor belt fault detection. Based on the complementary characteristics of machine vision, infrared imaging technology and visible light imaging technology, a binocular vision detection method for longitudinal tear of conveyor belt based on infrared and visible light fusion is proposed. According to the existing problems of the visual detection method of belt longitudinal tear, the design scheme of this method is put forward, which includes three parts: belt image collection, belt image preprocessing, belt image longitudinal tear feature extraction and recognition. Based on infrared and visible light fusion technology, a new integrated binocular vision sensor is proposed to collect infrared and visible light fusion images. The sensing device divides the incident coaxial light from the same lens into infrared light and visible light by means of prism, and enters into two photosensitive chips respectively, which can simultaneously capture infrared and visible light information in the same scene. There is no need for registration before image fusion. In this paper, the imaging principle of the sensor is studied, and its imaging process is simulated on MATLAB to verify its feasibility and effectiveness. Due to the theoretical simulation of the integrated binocular vision sensor proposed in this paper, the infrared image and the visible light image are collected by infrared camera and visible light camera respectively in the experiment part of the conveyor belt image acquisition. Then the infrared and visible image registration fusion, finally achieve the conveyor belt infrared and visible light fusion image acquisition. An image acquisition experiment platform is set up in the laboratory to realize the fusion image acquisition of conveyor belt in tearing state, normal state and scratch state. In order to make the detection more reliable, the belt fusion image acquisition needs to be preprocessed. In this paper, the characteristics of longitudinal tear of conveyor belt are analyzed, and a series of preprocessing is carried out on the image, including removing image noise, enhancing image contrast, highlighting the region of interest in detection, and extracting the information of tearing target. After preprocessing, the visual effect of the image is better, and the tear target is more prominent, which makes a good preparation for the subsequent longitudinal tear feature extraction and recognition. On the basis of the preprocessed images, the projection features of the images are extracted by projection method, and the geometric features of the images are calculated, that is, the longitudinal tearing parameters of the conveyor belt: tear length, width and area. According to the characteristics of projection features of each type of conveyor belt image and the parameters of longitudinal tear, the identification threshold is set and the recognition rule of longitudinal tear is stipulated. Finally, the conveyor belt image is classified as: tearing state, normal state, scratch state, and so on. Realization of different states of the conveyor belt image recognition and detection. The preprocessing, tearing feature extraction and recognition processing of the collected conveyor belt images are carried out on the platform of MATLAB programming software. The experimental results show that the proposed binocular visual detection method for longitudinal tear of conveyor belt can recognize tear and scratch, and can predict potential tear. The detection accuracy is over 96%, and the detection time of single frame image is less than 21ms. it is a reliable method. Real-time online detection method.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD528.1;TP391.41
【参考文献】
相关期刊论文 前10条
1 权亚楠;卜丽静;武文波;;改进的阈值加权平均HSV与小波变换图像融合[J];辽宁工程技术大学学报(自然科学版);2016年01期
2 王国华;刘琼;庄家俊;;基于局部特征的车载红外行人检测方法研究[J];电子学报;2015年07期
3 李锋;阚建霞;;基于Sobel算子的图像快速二维最大熵阈值分割算法[J];计算机科学;2015年S1期
4 周渝人;耿爱辉;张强;陈娟;董宇星;;基于压缩感知的红外与可见光图像融合[J];光学精密工程;2015年03期
5 周靖鸿;周璀;朱建军;樊东昊;;基于非下采样轮廓波变换遥感影像超分辨重建方法[J];光学学报;2015年01期
6 王建勋;;煤矿输送带传输故障实时监测技术[J];工矿自动化;2015年01期
7 周雨薇;杨平吕;陈强;孙权森;;基于MTF和变分的全色与多光谱图像融合模型[J];自动化学报;2015年02期
8 李旭阳;易红伟;齐浩程;;多光谱遥感相机光学系统设计[J];光子学报;2015年03期
9 张鹏;张志辉;;基于分段直方图变换的图像非线性增强[J];光子学报;2014年S1期
10 何海明;齐冬莲;张国月;张建良;;快速高效去除图像椒盐噪声的均值滤波算法[J];激光与红外;2014年04期
相关博士学位论文 前2条
1 卜凡;光学遥感系统的建模仿真及图像处理技术研究[D];中国科学院研究生院(西安光学精密机械研究所);2014年
2 李寒;基于机器视觉的目标检测在精细农业中的关键技术研究[D];中国农业大学;2014年
相关硕士学位论文 前10条
1 阳婷;基于视频监控的火灾探测系统的研究与实现[D];东华大学;2016年
2 彭宝;基于机器视觉辅助驾驶系统中行人实时检测跟踪研究[D];东华大学;2016年
3 佟卓远;基于机器视觉的前方车辆检测与测距系统设计[D];哈尔滨工业大学;2015年
4 朱妍妍;基于机器视觉的胶管表面缺陷检测系统研究[D];北京理工大学;2015年
5 崔东顺;可见光航拍图像水上桥梁检测算法研究[D];北京理工大学;2015年
6 何伟;基于小波变换和假彩色的医学图像融合[D];北京理工大学;2015年
7 葛世国;基于数学形态学的遥感图像分割算法研究[D];成都理工大学;2014年
8 狄帅;基于FPGA的输送带表面超声检测系统开发[D];华东理工大学;2014年
9 陈永亮;灰度图像的直方图均衡化处理研究[D];安徽大学;2014年
10 韩博;手持式红外与可见光图像融合系统研究[D];南京理工大学;2014年
,本文编号:2153304
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/2153304.html