MBBR工艺中悬浮填料的参数控制及优化组合研究
[Abstract]:Moving bed biofilm reactor (Moving bed biofilm reactor,MBBR) is a new water treatment technology developed on the basis of biofilter and fluidized bed. It effectively absorbs the advantages of the traditional activated sludge process and the traditional biofilm process. It is a new and efficient composite wastewater treatment process. The key is to determine the quantity and activity of the biofilm on the surface of suspended filler. In this study, the MBBR process was used to treat the domestic sewage of Southwest University of Science and Technology (COD_ (cr): 2286mg / L). The filling rate of suspended fillers was optimized by adjusting the start-up conditions of the suspensions. The total microbial content in the reactor was enhanced by screening and combining the suspended fillers, and the sewage treatment effect was improved. The main conclusions are as follows: aeration rate and HRT (HRT) are the important factors affecting the start-up of the film. With the increase of aeration rate and the prolongation of HRT, the removal rate of NH4 ~ -N of COD_ (cr) increased first and then decreased. When the aeration rate is 5 L/min, the removal rate of pollutants is the highest, and the removal rate of NH4- N of COD_ (cr) can reach 91.1% and 95.17%, respectively. When HRT was 8 h and 10 h, the removal efficiency of pollutants was similar and higher than that of HRT at 6 h and 12 h. The optimum value of HRT is 8 h, and the removal rate of NH4 ~ -N of COD_ (cr) can reach 89.27% and 92.18% respectively. Filling rate has a significant effect on MBBR wastewater treatment. With the increase of filling ratio, the removal effect of polyethylene and polyurethane fillers on pollutants decreased after significant improvement, and the optimum filling ratio of suspension filler was determined to be 30%. At this time, the removal rates of COD_ (cr) NH4- N and TN by polyethylene filler can reach 94.12 ~ -97.45 and 97.45% respectively. The effluent concentration is 38 mg/L,1.32 mg/L,17.51 mg/L; polyurethane filler to remove COD_ (cr) NH4- N and TN respectively up to 93.81%, 97.41% and 70.98%, respectively. The effluent concentration is 40 mg/L,1.34 mg/L,18.25 mg/L., respectively. The effects of different suspensions on MBBR wastewater treatment were different. APG suspensions had the best removal effect on COD_ (cr) NH4- NTN, followed by polyethylene white, polyethylene black and polyurethane suspensions. The pollutant removal efficiency of APG suspensions was always higher than that of the other three suspensions, and that of polyurethane suspensions was higher than that of two kinds of polyethylene fillers. However, the final removal efficiency was lower than that of two polyethylene fillers. The final removal rate of COD_ (cr) is higher than that of APG suspensions and polyethylene white suspensions compared with that of APG suspensions and polyethylene white suspensions alone. The final removal rate of NH_4~ -N was 8.49% and 17.19% higher than that of APG suspending filler and polyethylene white suspending filler, respectively. The final removal rate of TN was higher than that of APG suspending filler and polyethylene white suspension filler. The removal rate of TN was increased by 4.4% when the filler was added alone, and the 10.37%.APG polyethylene white suspension filler was added in the proportion of 1:1. On the 21st day, the amount of film hanging reached 5.37 mg/g, which was higher than that of APG (4.16 mg/g) and polyethylene filler (2.78 mg/g). From day 21 to day 27, the biofilm amount of polyethylene white filler increased only by 4.47%, while that of polyethylene white filler and APG filler increased by 26.26% and 17.31%, respectively. It can be considered that on the 21 st day the composite packing has basically completed the hanging film. Therefore, the combination of suspending fillers can shorten the time of film suspension.
【学位授予单位】:西南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X703
【相似文献】
相关期刊论文 前10条
1 何国富,徐和胜,周增炎,高廷耀,黄民生,徐亚同;悬浮填料优化试验研究[J];环境科学与技术;2005年04期
2 陶红;顾志英;郝思秋;刘瑞芳;高廷耀;;13X分子筛基悬浮填料的制备及性能初探[J];中国给水排水;2006年11期
3 董滨;金波;何群彪;高廷耀;;关于污水处理领域悬浮填料产品的探讨[J];净水技术;2008年03期
4 黄春曼;;用注射分析对悬浮填料结构优化[J];现代制造工程;2009年11期
5 金冬霞,田刚,施汉昌;悬浮填料的选取及其性能试验研究[J];环境科学学报;2002年03期
6 吴晓亮;张权;江霜英;;关于悬浮填料生物膜工艺的探讨[J];环境科技;2008年06期
7 赵勇;任玉斌;;悬浮填料处理市政废水的实验研究[J];污染防治技术;2008年02期
8 路远;孙力平;衣雪松;李志伟;安莹;;生物膜法水处理用悬浮填料的筛选[J];工业用水与废水;2008年05期
9 杨敏;孙永利;郑兴灿;李鹏峰;鲍立新;刘伟群;;悬浮填料强化硝化及其工程应用效果研究[J];给水排水;2010年12期
10 赵一宁;汤兵;张忠华;付丰连;陈文松;梁文钟;马腾;李yN毅;;利用悬浮填料附着生物膜同步去除碳氮磷[J];环境工程学报;2012年12期
相关会议论文 前2条
1 路远;孙力平;衣雪松;吕建波;李志伟;;悬浮填料中试挂膜试验研究及机理分析[A];2008年全国给水排水技术交流会暨全国水网理事会换届大会论文集[C];2008年
2 任玉兵;赵勇;;悬浮填料生物膜技术在城市废水中的实验研究[A];中国环保装备产业发展论坛论文汇编[C];2007年
相关重要报纸文章 前1条
1 索剑波;问渠哪得清如许[N];中华建筑报;2008年
相关博士学位论文 前2条
1 董滨;应用于活性污泥法系统的新型悬浮填料澄清池的机理及运行研究[D];同济大学;2006年
2 刘长青;城镇污水处理A_mO_n一体化工艺研发及机理研究[D];同济大学;2007年
相关硕士学位论文 前10条
1 刘月;MBBR与A/O复合工艺优化运行关键技术中试研究[D];昆明理工大学;2016年
2 王玉;悬浮填料对城市污水A~2/O工艺硝化过程强化研究[D];西安建筑科技大学;2016年
3 王亚举;MBBR工艺中悬浮填料的参数控制及优化组合研究[D];西南科技大学;2017年
4 郭志涛;新型悬浮填料的研制及应用研究[D];南京大学;2011年
5 齐婧;悬浮填料改善低温高盐废水处理效果的研究[D];青岛大学;2007年
6 张朋川;悬浮填料用于污水处理厂升级改造及工程示范研究[D];天津师范大学;2013年
7 郑作添;球型组合片悬浮填料的制备及其在污水处理中的应用[D];同济大学;2006年
8 晁聪;悬浮填料生物转筒处理生活污水的研究[D];河北工程大学;2010年
9 刘宇航;活性微孔弹性体的制备及其生物固定效应的研究[D];北京化工大学;2005年
10 白志超;投加悬浮填料的泥层过滤反应器处理生活污水的试验研究[D];青岛理工大学;2012年
,本文编号:2200766
本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/2200766.html