当前位置:主页 > 硕博论文 > 工程硕士论文 >

煤制天然气合成气中CO_2分离方法与特性研究

发布时间:2018-08-26 20:42
【摘要】:在目前的煤制天然气(SNG)工艺中,一般采用低温甲醇洗工艺进行CO2气体的脱除,然而,由于低温甲醇洗往往受到酸性气体中S含量以及装置制冷量的影响,导致脱除效果下降。因此,需要对现有的CO2气体脱除方法特性进行研究,为寻找可替代低温甲醇洗的更有安全、有效的脱除酸性气体的方法提供一定的理论基础和数据支持。本文在实验室的规模下,利用膜分离实验系统、MEA化学吸收实验系统对CO2膜分离法及MEA化学吸收法进行了实验研究,并提出了理论分析方法,在此基础上,本文提出了新型的膜分离——化学吸收联合脱除CO2的方法,在膜分离——MEA化学吸收实验台上对该方法进行了验证。研究结果如下:膜分离系数是衡量高分子膜分离气体性能的一个重要参数,进气的体积流率越大、压力越高以及温度越低,膜分离系数越大,膜渗透端得到的气体CO2浓度越高,Generon210膜的分离系数大于Prism膜,但后者在进气工况变化时分离性能更加稳定,在0.9MPa,25℃,60L/min的进气条件下,Generon210膜渗透端CO2浓度为63.4%,分离效率为63.27%,CH4回收率为93.55%,浓度为95.5%。MEA的流量与温度越高,MEA吸收CO2量越大,MEA溶液浓度超过30%之后,由于溶液粘度增大,吸收量下降,60L/minCO2浓度为15%的混合气体经过30%、55℃、15L/h的MEA溶液吸收后,分离效率可达到99%以上,回收的CH4浓度在99%以上;30%、100℃的MEA富液与6m3/h的蒸汽接触可获得最高的解吸率,为72.52%。根据两性离子机理来准确地描述MEA化学吸收与解吸过程,并由机理推导的动力学模型可计算MEA化学吸收过程中的吸收速率以及解吸过程中任一时刻的解吸率。联合法分离CO2的过程受到进气压力、体积流率、温度以及MEA浓度、流量、温度等多种因素的影响,要达到理想的分离效果,必须调节MEA与CO2的摩尔比达到1.15以上,此时分离效率为81%,回收的CH4浓度为95.5%。联合法有利于大量减少化学吸收所需的MEA量,因此适用于大气量处理工艺中,可作为替代低温甲醇洗的方法。
[Abstract]:In the current (SNG) process of natural gas from coal to natural gas, the low temperature methanol washing process is generally used to remove CO2 gas. However, the low temperature methanol washing process is often affected by the S content in the acid gas and the cooling capacity of the unit, which results in the decrease of the removal effect. Therefore, it is necessary to study the characteristics of existing CO2 gas removal methods in order to provide a theoretical basis and data support for finding a more safe and effective method to remove acid gas from methanol washing at low temperature. In this paper, the CO2 membrane separation method and MEA chemical absorption method are studied by using the membrane separation experiment system under the laboratory scale, and the theoretical analysis method is put forward. In this paper, a new method of membrane separation-chemical absorption combined removal of CO2 has been proposed and verified on the membrane separation-MEA chemical absorption test bench. The results are as follows: the membrane separation coefficient is an important parameter to measure the gas separation performance of polymer membrane. The larger the volumetric flow rate of inlet air, the higher the pressure and the lower the temperature, the larger the membrane separation coefficient is. The higher the gas CO2 concentration at the permeation end of the membrane is, the higher the separation coefficient of the membrane is higher than that of the Prism membrane, but the separation performance of the latter is more stable when the inlet condition changes. The concentration of CO2 at the osmotic end of the membrane is 63.4, the separation efficiency is 63.27g / min, and the recovery rate of CH4 is 93.55. The higher the flow rate and temperature of 95.5%.MEA is, the higher the concentration of CO2 is, and the higher the concentration of CO2 is, the higher the solution viscosity is. After absorption of the mixed gas with the concentration of 60L / min CO _ 2 is 15%, the separation efficiency can reach more than 99%, and the highest desorption rate can be obtained when the concentration of the recovered CH4 is more than 99% and the rich solution of MEA has contact with the vapor of 6m3/h, which is 72.52%. According to the amphoteric ion mechanism, the chemical absorption and desorption process of MEA can be accurately described. The kinetic model derived from the mechanism can be used to calculate the absorption rate in the chemical absorption process of MEA and the desorption rate at any time during the desorption process. The combined separation of CO2 is influenced by inlet pressure, volume flow rate, temperature, concentration of MEA, flow rate, temperature and so on. To achieve the ideal separation effect, the molar ratio of MEA to CO2 must be adjusted to be above 1.15. The separation efficiency was 81 and the recovered CH4 concentration was 95. 5%. The combined method is beneficial to reduce the amount of MEA needed for chemical absorption, so it can be used as a substitute for methanol washing at low temperature.
【学位授予单位】:上海交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE665.3

【相似文献】

相关期刊论文 前10条

1 蒋作良;;化学吸收及其计算[J];辽宁化工;1983年04期

2 徐金火,汤渭龙,沈复,李志良;多元化学吸收液平衡闪蒸的计算模型[J];化学工程;1990年05期

3 李相福;张新;;CO_2的化学性处理技术[J];广州化工;2013年02期

4 张兴法;化学吸收增强因子的计算和应用[J];氮肥设计;1995年03期

5 宋存义;周向;;捕集低浓度二氧化碳的化学吸收工艺及其综合比较[J];环境工程学报;2012年01期

6 张成芳;;物理吸收与化学吸收[J];化肥设计;1983年03期

7 张成芳;;物理吸收与化学吸收[J];化肥设计;1983年06期

8 林玄鹤;两种气体同时吸收的数学模型[J];福州大学学报(自然科学版);1987年03期

9 张成芳;;物理吸收和化学吸收[J];化肥设计;1982年03期

10 刘遵仁;;伴有飞速不可逆化学反应的吸收图解分析和计算[J];河北工学院学报;1983年02期

相关会议论文 前2条

1 陆文龙;;二氧化碳的捕集技术研究进展[A];第十届中国科协年会第18分会二氧化碳减排和绿色化利用与发展研讨会论文集[C];2008年

2 曾令可;李萍;程小苏;王慧;税安泽;刘平安;;窑炉烟气中二氧化碳的回收工艺探讨[A];中国硅酸盐学会陶瓷分会2009年年会论文集(二)[C];2009年

相关博士学位论文 前3条

1 任杰;新型CO_2吸收(附)剂的制备及性能研究[D];浙江大学;2013年

2 刘楠;生物还原耦合化学吸收处理烟气中NO_x的关键因素及作用机制[D];浙江大学;2012年

3 晏水平;膜吸收和化学吸收分离CO_2特性的研究[D];浙江大学;2009年

相关硕士学位论文 前10条

1 凌凡;煤制天然气合成气中CO_2分离方法与特性研究[D];上海交通大学;2015年

2 吴成志;化学吸收—生物还原处理烟气中的氮氧化物[D];浙江大学;2006年

3 白宸阳;非热放电与化学吸收结合废气脱硝实验研究[D];大连海事大学;2013年

4 冯琳玉;过一硫酸氢盐化学吸收氧化去除甲硫醇恶臭气体[D];中国海洋大学;2014年

5 仲伟龙;CO_2化学吸收技术研究[D];浙江大学;2008年

6 方美青;O_3氧化—化学吸收联合处理再生胶恶臭气体的研究及应用[D];浙江工业大学;2010年

7 姜锦林;化学吸收—生物还原法处理烟气中氮氧化物[D];浙江大学;2008年

8 翟代龙;燃煤电厂化学吸收CO_2捕获过程的优化集成研究[D];华北电力大学;2014年

9 张苗苗;燃煤电厂烟气CO_2化学吸收模拟与分析[D];山东科技大学;2011年

10 冯X;基于分子模拟的CO_2吸收离子液体筛选[D];华东理工大学;2012年



本文编号:2206100

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/2206100.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c800b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com