当前位置:主页 > 硕博论文 > 工程硕士论文 >

稀土锆酸盐体系荧光粉的制备及发光性能研究

发布时间:2018-08-27 17:41
【摘要】:稀土离子特殊的4f电子在f-f组态之内及f-d组态之间的跃迁发射,可产生大量的辐射和荧光光谱信息。它们可以发射各类从紫外光、可见光到红外光区多种波长的电磁辐射。其发光特点具有:亮度高、色彩鲜艳、色纯度高、光吸收能力强、发射波长可调等优点。所以近几年来,稀土无机发光材料已成为照明、显示、光通讯及医学影像等诸多显示领域的支柱材料,研发制备高性能荧光粉已经成为新时期发光材料领域的重要课题。鉴于此,根据稀土材料的理化性质,本论文拟研究以锆酸盐为基质的稀土发光材料,通过水热法分别制备了Gd_2Zr_2O_7、Y_2Zr_2O_7荧光粉,掺杂激活离子(Eu~(3+),Tb~(3+))实现红、绿光发射,并讨论不同表面活性剂在改善荧光粉发光性能方面的作用。得到的主要结论如下:1.采用水热法制备了Gd_2Zr_2O_7:Eu~(3+)红色荧光粉,探索Eu~(3+)的最优掺杂比例。采用X射线衍射仪(XRD)、扫描电镜(FE-SEM)、荧光光谱(PL)等表征手段对荧光粉的物相组成、微观结构和发光性能进行分析。XRD谱图分析表明不同Eu~(3+)掺杂浓度样品(Gd1-xEux)_2Zr_2O_7的衍射峰基本一致,与标准物相卡片Gd_2Zr_2O_7(JCPDS no.16-0799)相吻合并证实样品的微观结构为有序的烧绿石结构。由FE-SEM观察可知样品的微观结构为纳米棒,长度约为2000-3000 nm,直径在300 nm左右。PL分析表明,当Eu~(3+)掺杂浓度达到4%时,样品在613 nm(5D0→7F2)处的发光强度达到最大值,继续掺杂强度反而下降,出现了浓度猝灭现象。文章着重对其发光机理、影响发光性能的因素给予解释并提出进一步优化性能的方案;2.采用水热法制备Gd_2Zr_2O_7:Tb~(3+)绿色荧光粉,通过XRD、FE-SEM、TEM、PL等表征手段对实验结果进行分析。结果显示,Gd_2Zr_2O_7:Tb~(3+)荧光粉的微观一维纳米棒直径约为30 nm,长度在150-300 nm范围内。PL测试结果表明,Tb~(3+)展现出了较强的绿光发射性能,归属于Tb~(3+)的5D4→7FJ(J=3-6)的电子跃迁发射,最强发射峰出现在545 nm(5D4→7F5)处,当Tb~(3+)掺杂浓度为5%时出现了明显的浓度猝灭,探讨了Tb~(3+)之间的交叉驰豫对发光强度及光纯度的影响。本节采用高温固相法制备的对比样品(Gd0.95Tb0.05)_2Zr_2O_7的微观形貌为不规则的多边形,尺寸不均匀,发光强度略高于水热法。3.以Y_2Zr_2O_7为基质材料,采用水热法制备Y_2Zr_2O_7:Tb~(3+)绿色荧光粉。荧光光谱分析表明,(Y1-x Tbx)2ZrO7荧光粉的最强发射峰归属于Tb~(3+)的5D4→7F5电子跃迁(545 nm)的强绿光发射,通过公式计算出发生浓度猝灭时Tb~(3+)之间的距离并证实此时交叉驰豫是影响浓度猝灭的主要原因。FE-SEM证实,所制备的产物为空心纳米管状结构,内直径约为80~130nm,管壁厚度在30~70 nm范围之间,长度在3~5μm之间,这种形貌规则性高、分散性好的纳米级荧光粉具有较好的应用前景;4.在已知Y_2Zr_2O_7:Tb~(3+)荧光粉中Tb~(3+)的最优掺杂比例的前提下,依次添加有机添加剂十二烷基苯磺酸钠(SDBS)、十二烷基硫酸钠(SDS)、非离子表面活性剂聚乙烯吡咯酮(PVP)、有机盐类乙二胺四乙酸二钠(EDTA)四种表面活性剂来提高荧光粉的发光强度。添加四种表面活性剂样品的微观颗粒为纳米棒结构。通过与无添加样品对比可知,表面活性剂可明显提高荧光粉的光吸收能力、量子效率、发光强度,其中掺杂有EDTA的荧光粉其发光强度是无表面活性剂添加样品的7倍,同时其微观纳米棒尺寸均匀、表面光滑,形貌规则性良好,具备高性能荧光粉的应用潜力。
[Abstract]:The special 4f electrons of rare earth ions emit a great deal of radiation and fluorescence information in the f-f configuration and between the F-D configuration. They can emit electromagnetic radiation of various wavelengths from ultraviolet, visible to infrared regions. Their luminescence characteristics are high brightness, bright color, high color purity, strong light absorption ability and emission. In recent years, rare earth inorganic luminescent materials have become the backbone materials for illumination, display, optical communication, medical imaging and many other display fields, and the development and preparation of high-performance phosphors have become an important issue in the field of luminescent materials in the new era. Gd_2Zr_2O_7, Y_2Zr_2O_7 phosphors were synthesized by hydrothermal method with zirconate as the base material. Red and green light emission was achieved by doping active ions (Eu~ (3+), Tb~ (3+). The effects of different surfactants on improving the luminescent properties of phosphors were discussed. The main conclusions were as follows: 1. Gd_2Zr_2O_7 phosphors were prepared by hydrothermal method. X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), fluorescence spectroscopy (PL) and other characterization methods were used to analyze the phase composition, microstructure and luminescent properties of Eu~ (3+) red phosphors. XRD spectra showed that the diffraction peaks of samples with different Eu~ (3+) doping concentrations (Gd1-xEux) _2Zr_2O_7 were basically the same. The microstructure of the sample was confirmed to be ordered pyrochlore structure. The FE-SEM observation showed that the microstructure of the sample was nanorods with a length of about 2000-3000 nm and a diameter of about 300 nm. PL analysis showed that when Eu~ (3+) doping concentration reached 4%, the sample was 613 nm (5D0-7F). 2) The luminescent intensity reaches the maximum value, but the doping intensity decreases and the concentration quenching occurs. The luminescent mechanism and the factors affecting the luminescent properties are explained and a scheme for further optimizing the luminescent properties is proposed. 2. Gd_2Zr_2O_7:Tb~ (3+) green phosphor is prepared by hydrothermal method and characterized by XRD, FE-SEM, TEM and PL. The results show that the diameter of Gd_2Zr_2O_7:Tb~ (3+) nanorods is about 30 nm and the length is in the range of 150-300 nm. The PL test results show that Tb~ (3+) exhibits a strong green emission property, belonging to the 5D4 7FJ (J = 3-6) of Tb~ (3+) and the strongest emission peak appears at 545 nm. At 5D4 7F5, the concentration quenching of Tb ~ (3 +) doping occurs when the concentration of Tb ~ (3 +) is 5%. The effect of cross-relaxation between Tb ~ (3 +) on the luminous intensity and optical purity is discussed. In this section, the contrast sample (Gd0.95Tb0.05) _2Zr_2O_7 prepared by high temperature solid-phase method is an irregular polygon with uneven size and slightly higher luminous intensity. 3. Y_2Zr_2O_7:Tb~ (3+) green phosphor was prepared by hydrothermal method using Y_2Zr_2O_7 as the substrate material. The fluorescence spectrum analysis showed that the strongest emission peak of the (Y1-x Tb x) 2ZrO_7 phosphor belonged to the strong green emission of the 5D4 7F5 electron transition (545 nm) of Tb~ (3+) when the concentration quenching occurred. The distance between Tb~ (3+) was calculated by formula. FE-SEM confirmed that the product was a hollow nanotube with an inner diameter of 80-130 nm, a wall thickness of 30-70 nm and a length of 3-5 micron. This kind of phosphor with high regularity of morphology and good dispersion has a good application prospect. On the premise of optimum doping ratio of Tb~ (3 +) in Y_2Zr_2O_7:Tb~ (3 +) phosphor, four surfactants, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), non-ionic surfactant polyvinylpyrrolidone (PVP), organic salt disodium ethylenediaminetetraacetate (EDTA), were added to improve the luminescence intensity of phosphor. The results show that the surface active agent can obviously improve the light absorption ability, quantum efficiency and luminous intensity of phosphors. The luminous intensity of the phosphors doped with EDTA is 7 times higher than that of the samples without surfactant, and the micro-nano-scale of the phosphors is also obtained. The rice bar is uniform in size, smooth in surface and regular in shape. It has the potential of high performance phosphor.
【学位授予单位】:浙江理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ422

【相似文献】

相关期刊论文 前10条

1 苏威;;水热法加工灰重石[J];无机盐工业;1984年08期

2 詹文豹;;水热法生产氧化锆系超微粒[J];稀土信息;1992年08期

3 施尔畏,仲维卓,华素坤,路治平,赵天德,栾怀顺;水热法紫色水晶的生长[J];硅酸盐学报;1993年04期

4 施尔畏,,夏长泰,王步国,仲维卓;水热法的应用与发展[J];无机材料学报;1996年02期

5 沈才卿;;山东蓝宝石颜色成因解说及改色方法探讨——兼谈高温高层厌水热法改色试验[J];中国宝玉石;1993年02期

6 温立哲,邓淑华,黄慧民,周立清;水热法制备氧化锆微粉的进展[J];无机盐工业;2003年02期

7 王海龙;徐中慧;吴丹丹;谭钦文;谢羽佳;李春林;;粉煤灰两步水热法制备人工沸石[J];化工环保;2013年03期

8 章元济;用水热法自明矾石制造硫酸钾[J];化学世界;1956年08期

9 苏威;;水热法处理铬矿生产铬盐[J];无机盐工业;1984年01期

10 马剑华;毛铭华;;水热法制备超细氧化锆粉末的研究[J];化工冶金;1993年01期

相关会议论文 前10条

1 张士成;陈炳辰;韩跃新;;水热法制备陶瓷粉[A];第六届全国粉体工程学术大会暨2000年全国粉体设备-技术-产品交流会会议文集[C];2000年

2 雷霆;罗凤兰;薄新维;夏世华;;水热法制备纳米热敏材料研究[A];四川省电子学会传感技术第九届学术年会论文集[C];2005年

3 ;水热法制备系列纳米级铈锆基稀土复合氧化物固溶体粉体[A];广东省材料研究学会部分单位会员成果汇编[C];2005年

4 邓宏;姜斌;曾娟;李阳;王恩信;;水热法在陶瓷粉体制备中的应用研究[A];第四届中国功能材料及其应用学术会议论文集[C];2001年

5 郑雅杰;符丽纯;;添加剂对水热法制备超细氧化铁的影响[A];第六届中国功能材料及其应用学术会议论文集(6)[C];2007年

6 汪海峰;张莉;王志成;;低温水热法制备多铁性材料铁酸铋[A];全面建成小康社会与中国航空发展——2013首届中国航空科学技术大会论文集[C];2013年

7 赵青;杨阳;孙永欣;王绍钢;刘力;常爱民;;低温微波水热法制备氧化钇稳定氧化锆[A];第十届全国敏感元件与传感器学术会议论文集[C];2007年

8 黄敏文;苑星海;李勇;;水热法镱、铥共掺纳米上转换材料的制备[A];第11届全国发光学学术会议论文摘要集[C];2007年

9 王恩过;丘小玲;;微波水热法制备的YVO_4:Eu~(3+)材料的发光性能研究[A];“第十四届全国微波能应用学术会议”暨“2009年微波创造美的生活高峰论坛”论文集[C];2009年

10 叶晓云;周钰明;陈景;孙艳青;王志强;;不同形貌ZnO的水热法制备与表征[A];2007年全国博士生学术论坛(材料科学与工程学科)论文集[C];2007年

相关重要报纸文章 前2条

1 记者 左永刚;水热法降低医疗废物焚烧飞灰毒性实现新应用[N];中国高新技术产业导报;2010年

2 廖欣 蒋卉;桂林矿地院聘请院士为高级顾问[N];中国有色金属报;2006年

相关博士学位论文 前10条

1 盛英卓;水热法制备水溶性碳点及其荧光性能与应用研究[D];兰州大学;2015年

2 冯晓婷;用于LED的单一基质碳量子点荧光粉的合成与发光性能[D];太原理工大学;2016年

3 张凤荣;层状双氢氧化物基吸附剂制备及性能研究[D];山东大学;2015年

4 潘清涛;纳米材料的水热法制备与表征[D];兰州大学;2009年

5 刘义;水热法制备铋铁系化合物及其光催化性能研究[D];合肥工业大学;2013年

6 王明军;氧化锌/二氧化钛纳米材料的水热法制备、表征及在光电器件中的应用[D];武汉大学;2011年

7 顾江江;新型高性能氮掺杂碳点的设计、制备与应用研究[D];南京大学;2015年

8 董祥;纯钛水热法制备低维纳米结构TiO_2及其光电化学性能研究[D];南京航空航天大学;2009年

9 刘宝;氧化锌纳米晶的水热法制备及其掺杂改性研究[D];山东大学;2011年

10 金东日;γ-氧化铝和尖晶石型偏铝酸锌纳米结构的离子液体辅助水热法可控合成研究[D];南开大学;2010年

相关硕士学位论文 前10条

1 李江红;三聚氰胺树脂微球的水热法制备及表征[D];河北大学;2015年

2 刘运浩;水热法制备稀土锰氧化物纳米材料及磁性能研究[D];华南理工大学;2015年

3 王培奎;微波水热法制备BiFeO_3粉体及其陶瓷多铁性研究[D];陕西科技大学;2015年

4 戚瑞琼;Zr_2P_2WO_(12)及其复合材料的制备与性能研究[D];郑州大学;2015年

5 曾庆平;TiO_2新型复合催化剂的制备及性能研究[D];上海交通大学;2015年

6 尤明江;稀土Eu~(3+)掺杂CdWO_4纳米材料制备及发光性能研究[D];上海应用技术学院;2015年

7 张文静;流变相法和水热法制备锂离子电池正极材料磷酸钒锂及其性能研究[D];山东大学;2015年

8 范汇洋;微米碳球的水热法制备及其复合结构研究[D];华北电力大学;2015年

9 刘明;一步水热法构建及调控超疏水木材表面[D];中南林业科技大学;2015年

10 刘世丰;溶胶—水热法制备纳米SrTiO_3粉体及其表面包覆MgO复合陶瓷的制备和性能研究[D];广西大学;2015年



本文编号:2207974

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/2207974.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户950da***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com