当前位置:主页 > 硕博论文 > 工程硕士论文 >

盐湖化工自动化采卤决策支持系统研究

发布时间:2019-01-03 21:03
【摘要】:近年来,随着盐湖化工行业的发展,卤水资源的需求量也越来越大,因此,企业对卤水资源进行了过量的开采,致使卤水补给不足、资源匮乏,影响了盐湖化工行业的可持续发展。同时,由于设备运行状态不稳定、工作人员掌握的设备运行信息缺乏实效性、工作人员采用传统的经验分析方法根据人工巡检方式获得的信息制定决策方案,所以采卤系统中设备的故障率及损耗率高,影响了卤水的稳定开采和正常生产。在这样的背景下,盐湖卤水资源的合理稳定开采成为了一个严峻的问题。因此,为确保盐湖卤水资源的合理稳定开采,则科学合理的卤水开采决策机制是其中的关键。本文结合决策支持系统理论设计了一个有效的盐湖化工自动化采卤决策支持系统解决方案,主要包括下面几个部分的研究工作。首先,本文在分析了采卤系统卤水采集现状和井采生产实际需求的基础上,应用云计算、智能决策支持系统等理论设计了盐湖化工自动化采卤决策支持系统,并从系统的需求分析、功能结构设计、体系架构构建、数据库设计等方面完成设计。然后,本文归纳分析了采卤泵典型故障的特征趋势;针对泵故障诊断时存在的问题及故障判断方法的优势,选取了合适的分析对象及研究方法,分析了小波包能量熵特征提取、支持向量机的具体操作步骤及参数选择的依据,并结合相关理论构建了泵故障诊断模型及泵故障诊断系统。最后,本文分析了系统的开发工具与环境,展示了系统功能界面的实现情况,并以青海某盐湖化工企业2016年全年的数据为例对系统进行测试。测试表明,系统能有效地诊断采卤泵的故障(总体诊断率可达89.17%),从而验证了整个系统的可行性和可靠性。本系统的建立实现了盐湖井采自动化安全生产,提高了采卤系统生产自动化管理水平,并为工作人员提供了科学准确的分析和决策支持,提高了决策的科学性及技术含量,解决了盐湖化工企业的落后决策状况,使化工行业的决策更具有有效性和科学性,最终实现了盐湖卤水资源的合理稳定开采,增加了企业的生产效益,说明了系统的实现具有现实意义。
[Abstract]:In recent years, with the development of chemical industry in salt lake, the demand for brine resources is also increasing. Therefore, the enterprises have carried out excessive exploitation of brine resources, resulting in insufficient supply of brine and lack of resources. It affects the sustainable development of salt lake chemical industry. At the same time, because of the unstable operation state of the equipment and the lack of effectiveness of the equipment operation information grasped by the staff, the staff adopt the traditional experience analysis method to make the decision scheme according to the information obtained by manual inspection. Therefore, the failure rate and loss rate of the equipment in brine mining system are high, which affects the stable exploitation and normal production of brine. Against this background, the rational and stable exploitation of brine resources in salt lakes has become a serious problem. Therefore, in order to ensure rational and stable exploitation of brine resources in salt lakes, scientific and reasonable decision-making mechanism of brine exploitation is the key. Based on the theory of decision support system (DSS), an effective solution for automatic brine extraction decision support system for salt lake chemical industry is designed in this paper, which mainly includes the following parts of the research work. Firstly, on the basis of analyzing the present situation of brine collection in brine extraction system and the actual demand of well production, this paper designs the salt lake chemical automatic brine extraction decision support system by using cloud computing, intelligent decision support system and other theories. And from the system requirements analysis, functional structure design, architecture construction, database design and other aspects of the design. Then, the characteristic trend of typical faults of brine pump is summarized and analyzed in this paper. Aiming at the problems existing in pump fault diagnosis and the advantages of fault judgment method, the suitable analysis object and research method are selected, and the feature extraction of wavelet packet energy entropy, the concrete operation steps of support vector machine and the basis of parameter selection are analyzed. A pump fault diagnosis model and a pump fault diagnosis system are constructed based on the related theory. Finally, this paper analyzes the development tools and environment of the system, shows the realization of the system function interface, and takes the data of a chemical enterprise in Qinghai Salt Lake in 2016 as an example to test the system. The test results show that the system can effectively diagnose the fault of the halogen pump (the total diagnostic rate can reach 89.17%), which verifies the feasibility and reliability of the whole system. The establishment of this system realizes the production automation and safety production of salt lake well, improves the level of production automation management of brine mining system, provides scientific and accurate analysis and decision support for the staff, and improves the scientific and technical content of decision making. It solves the backward decision-making situation of the salt lake chemical enterprise, makes the decision of the chemical industry more effective and scientific, finally realizes the rational and stable exploitation of the salt lake brine resources, and increases the production benefit of the enterprise. The realization of the system is of practical significance.
【学位授予单位】:北京信息科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TS352

【参考文献】

相关期刊论文 前10条

1 梁罗希;吴江;;决策支持系统发展综述及展望[J];计算机科学;2016年10期

2 姜景升;崔嘉;王德吉;陈良超;;基于CEEMD-BP神经网络大数据轴承故障诊断[J];设备管理与维修;2016年09期

3 刘帅;孙晓东;佟施宇;;基于声振耦合分析的离心泵故障诊断[J];水泵技术;2016年04期

4 文成林;吕菲亚;包哲静;刘妹琴;;基于数据驱动的微小故障诊断方法综述[J];自动化学报;2016年09期

5 王宇飞;张勋;丁雪兴;;基于频谱分析的离心泵故障诊断[J];化工机械;2015年06期

6 李进;赵晨光;何杉;王庆国;翟爽;王鹏;杨在江;;基于振动监测的海上油田主海水泵故障诊断分析(英文)[J];Journal of Measurement Science and Instrumentation;2015年04期

7 周云龙;吕远征;;基于出口压力脉动奇异值的离心泵早期汽蚀故障诊断[J];化工自动化及仪表;2015年11期

8 卿绿军;谷立臣;孙昱;;电流频谱识别法在柱塞泵故障诊断中的应用[J];机床与液压;2015年17期

9 秦睿;余开朝;刘景旭;郭建;张飞;;一种基于云计算的营销决策支持系统框架研究[J];价值工程;2015年16期

10 宋福根;王奕莎;;基于云计算的生产决策支持系统[J];计算机系统应用;2015年04期

相关硕士学位论文 前4条

1 蔡擎;基于云计算的人力资源规划决策支持系统的开发与应用[D];暨南大学;2015年

2 吕自荟;水泵系统状态监测与故障诊断[D];哈尔滨工业大学;2014年

3 席玉洁;离心泵故障诊断专家系统的应用研究[D];北京化工大学;2011年

4 王文娟;基于数据挖掘的电厂设备检修决策支持系统的研究[D];华北电力大学(北京);2011年



本文编号:2399868

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/boshibiyelunwen/2399868.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8da9c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com