高分辨率紫外可见成像光谱仪地面定标技术研究
本文关键词:高分辨率紫外可见成像光谱仪地面定标技术研究 出处:《中国科学院大学(中国科学院国家空间科学中心)》2017年博士论文 论文类型:学位论文
更多相关文章: 紫外可见高分辨率成像光谱仪 地面定标 光谱定标 视场测量 辐亮度定标 偏振特性测试 BRDF测量
【摘要】:伴随空间光学遥感技术的不断进步,为了满足星载光学探测仪的发展和科研的需要,在近几十年中高分辨率星载成像光谱仪对探测精度要求在逐渐提高,仪器的设计越来越完善,其功能和性能指标也在不断提升。空间光学遥感载荷高精度探测的实现不仅取决于仪器本身的性能也取决于其探测数据的定量化反演的水平,即通过原始探测数据反演出目标气体含量的水平。而在探测数据定量化反演的过程中,地面定标是不可缺少的技术之一,高精度的成像光学遥感仪器的快速发展带来的是地面测试和定标技术的复杂化,因此针对星载光学成像光谱仪建立一套完整的地面测试系统是迫切需要的。紫外可见高分辨率成像光谱仪采用高光谱成像技术,是一台工作波段为300nm-500nm的双通道成像光谱仪,为开展相应的高精度地面定标技术研究,分别围绕五个方面展开定标了工作。本文第一章首先介绍了近些年来国内外星载光学遥感仪器的发展和国内外地面定标技术的现状,同时介绍了紫外可见高分辨率成像光谱仪的组成及相应的工作原理,并针对该载荷的性能指标确立了相应的定标工作。第二章研究了紫外可见高分辨率成像光谱仪的光谱定标技术,使用低压汞灯作为定标光源,研制了实验装置对载荷进行波长定标,波长定标结果表明,紫外可见高分辨率成像光谱仪可见通道的波长范围为377-517 nm,且波长定标总的不确定度为0.02798nm。为了准确描述仪器狭缝函数,针对紫外可见高分辨率成像光谱仪宽波段探测、大视场扫描、空间及光谱分辨率高的特点,空间中心自主研制了狭缝函数测量仪,狭缝函数测量仪能一次性输出多条分布均匀的窄带谱线,并利用该特点准确测描述了载荷狭缝函数,结果表明,输出谱线较好的符合高斯分布规律,由于存在光谱弯曲,导致边缘视场分辨能力略低于星下点视场光谱分辨能力,可见通道分辨率在0.42nm-0.50nm之间。第三章研究了紫外可见高分辨率成像光谱仪的视场及空间响应函数测量。利用狭缝函数测量仪定标了载荷视场并且描述了其空间响应函数,定标结果表明紫外可见高分辨率成像光谱仪的总视场为112.5°,与空间响应函数近似符合高斯分布,仪器跨轨飞行方向的星下点空间分辨率在1.36°-1.62°之间,在边缘视场载荷空间分辨率在1.48°-1.81°之间。第四章研究了紫外可见高分辨率成像光谱仪辐亮度定标的方法。首先研究了辐亮度定标的原理和方法,然后使用漫反射板法并使用相应的实验装置对紫外可见高分辨率成像光谱仪的辐亮度响应度定标。定标时选择f18辐照度标准灯作为光源,结合已知半球反射率和brdf的标准漫反射建立了实验平台,数据处理分别采用两种不同的算法——距离法和brdf法来计算辐亮度响应度。实验结果表明,利用距离法计算得到的漫反射板法辐亮度定标的相对不确定度在3.2%-4.9%之间,由于漫反射板的非标准朗伯反射面特性,两种算法得到的辐亮度响应度相差5.3%。第五章研究了紫外可见高分辨率成像光谱仪的双巴比涅退偏器的退偏性能及整机偏振灵敏度测试方法。本章首先从穆勒矩阵法和波动光学法两个不同的角度分析了双巴比涅退偏器的工作原理并推导了退偏度,分别对双巴比涅退偏器的退偏性能及紫外可见高分辨率成像光谱仪的偏振灵敏度测量。测试结果表明,双巴比涅退偏器在±15°的入射角范围内具有较好的退偏性能,且退偏度优于99%,退偏器退偏特性测试的不确定度为2.9‰,紫外可见高分辨率成像光谱仪整机偏振灵敏度测量不确定为2.1%。第六章研究了星上漫反射板双向反射分布函数的测试方法,并对紫外可见高分辨率成像光谱仪星上漫反射板的brdf测量。首先研究了漫反射双向反射分布函数的定义并探讨了brdf的测试方法,分别测试了漫反射铝板和聚四氟乙烯的双向反射分布函数,并将测试结果进行对比。实验结果表明,铝板的双向反射分布函数在大散射角时的变化比较大,在400nm处的brdf约为50%,聚四氟乙烯为材料的漫反射板的双向反射分布函数在大散射角±56°之间变化约为10%,总的测试不确定度约为4.1%。
[Abstract]:With the development of space optical remote sensing technology, in order to meet the development of spaceborne optical detector and research need, in recent decades the high resolution spaceborne imaging spectrometer for the detection accuracy requirements gradually increased, the instrument design more and more perfect, its function and performance index is also rising. The realization of high-precision detection of space optical remote sensing load depends not only on the performance of the instrument itself, but also on the level of the quantitative inversion of the detected data, that is, the target gas content level is retrieved through the original detection data. In the process of quantitative detection data inversion, ground calibration is one of the necessary technology, bring rapid development of optical imaging remote sensing instrument with high precision is the complexity of the ground testing and calibration, so for spaceborne optical imaging spectrometer to establish a complete set of ground testing system is urgently needed. The ultraviolet visible high resolution imaging spectrometer adopts hyperspectral imaging technology. It is a dual channel imaging spectrometer with a working band of 300nm-500nm. In order to carry out the corresponding high-precision ground calibration technology, the calibration work is carried out in five aspects. The first chapter introduces the recent domestic space borne optical remote sensing instrument development and the domestic and foreign status of ground calibration technology, and introduces the UV visible high resolution imaging spectrometer and its corresponding working principle, and establishes the corresponding calibration work for the performance of the load. The second chapter studies the UV high resolution imaging spectrometer calibration technology, the use of low pressure mercury lamp as the calibration source, an experimental device is developed for wavelength calibration of load, wavelength calibration results show that the UV visible imaging spectrometer with high resolution visible channel wavelength range of 377-517 nm, and the wavelength calibration determine the total degree of 0.02798nm. In order to accurately describe the instrument slit function, according to the characteristics of broad band ultraviolet visible spectroscopy and high resolution imaging detection, scanning space and large field, high spectral resolution, spatial center independently developed a slit function measuring instrument, slit function measuring instrument can output multiple uniform narrowband spectral line, and use the characteristics accurately described the results show that the load of slit function, in line with the Gauss distribution law of output line better, due to the presence of spectral bending, lead to edge resolution is slightly lower than the field of view FOV spectral resolution, visible channel resolution between 0.42nm-0.50nm. The third chapter studies the field of view and the measurement of the spatial response function of the UV visible high resolution imaging spectrometer. Calibration of load field and describes the spatial response function of the slit function measuring instrument, the calibration results show that the total field of UV visible imaging spectrometer with high resolution is 112.5 degrees, and the spatial response function approximation with Gauss distribution, instrument cross track flight direction of ground spatial resolution between 1.36 DEG -1.62 DEG, on the edge of the field load spatial resolution between 1.48 DEG -1.81 deg. In the fourth chapter, the method of radiance calibration for UV visible high resolution imaging spectrometer is studied. First, the principle and method of radiometric calibration is studied. Then, the diffuse reflectance plate method and the corresponding experimental device are used to calibrate the radiance response of the ultraviolet visible high resolution imaging spectrometer. The F18 irradiance standard lamp is selected as the light source when calibrating. Combined with the known hemisphere reflectivity and the standard diffuse reflection of BRDF, the experimental platform is established. Data processing adopts two different algorithms -- distance method and BRDF method to calculate the radiance response. The experimental results show that the relative uncertainty of the radiometric calibration obtained from the distance method is between 3.2%-4.9%. Due to the characteristic of the non-standard Lambert reflector of the diffuse reflector, the difference of radiance response between the two algorithms is 5.3%. The fifth chapter studies the double Babinet UV visible high resolution imaging spectrometer depolarization depolarization and the polarization sensitivity testing method. This chapter starts from two different angles of the Muller matrix method and wave optics method to analyze the working principle of double back polarizer Babinet and derived depolarization, polarization sensitivity measurement of double Babinet depolarization depolarization properties and UV visible high resolution imaging spectrometer. The test results show that the double Babinet depolarizer in the incident - 15 degree angle range with partial depolarization performance better, and the depolarization ratio is less than 99%, depolarizer depolarization test uncertainty degree is 2.9 per thousand, UV visible high resolution imaging spectrometer polarization sensitivity measurement uncertainty is 2.1%. In the sixth chapter, the test method of bidirectional reflectance distribution function on the diffuse reflector is studied, and the BRDF measurement of the ultraviolet visible high resolution imaging spectrometer is done. First, the definition of diffuse reflectance bidirectional reflectance distribution function is studied, and the testing method of BRDF is discussed. The bidirectional reflectance distribution function of diffuse reflection aluminum plate and polytetrafluoroethylene is tested respectively, and the test results are compared. The experimental results show that the change of BRDF at large scattering angles when the plate is relatively large, in the 400nm BRDF at about 50%, PTFE bidirectional reflectance diffuse plate material distribution function between the large scattering angle + 56 degrees change is about 10%, the total test uncertainty is about 4.1%.
【学位授予单位】:中国科学院大学(中国科学院国家空间科学中心)
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TH744.1
【参考文献】
相关期刊论文 前10条
1 毛靖华;王咏梅;石恩涛;张仲谋;江芳;;星载高光谱成像光谱仪狭缝函数测试方法的研究[J];光谱学与光谱分析;2017年04期
2 李明;宗肖颖;;定标漫反射板实验室系统级BRDF测量方法[J];红外与激光工程;2017年01期
3 尹禄;卢禹先;巴音贺希格;杨晋;崔继承;;中阶梯光栅光谱仪的多谱线联合在线定标方法[J];光学学报;2016年09期
4 王宏博;胡秀清;张璐;张崇丙;任百川;黄小仙;危峻;;光栅色散型成像光谱仪的偏振校正方法研究[J];光学学报;2016年08期
5 赵敏杰;司福祺;陆亦怀;汪世美;江宇;周海金;刘文清;;星载石英漫反射板双向反射分布函数实验测量研究[J];光谱学与光谱分析;2016年05期
6 赵艳华;董建婷;张秀茜;王斌;;漫反射板全光路全视场全口径在轨辐射定标技术[J];航天返回与遥感;2016年02期
7 撖們們;;一种高光谱成像光谱仪光谱定标方法[J];长春工业大学学报;2015年06期
8 张艳娜;郑小兵;李新;刘恩超;李文伟;;基于可调谐激光器的太阳光谱辐照度仪定标方法[J];红外与激光工程;2014年08期
9 王磊;;一种新型空间伪退偏器的设计与研究[J];光学技术;2014年03期
10 赵敏杰;司福祺;陆亦怀;汪世美;江宇;周海金;刘文清;;星载大气痕量气体差分吸收光谱仪定标系统中铝漫反射板实验测量研究[J];物理学报;2013年24期
相关博士学位论文 前7条
1 王宏博;推扫式可见光/近红外成像光谱仪的在轨光谱定标与偏振校正技术研究[D];中国科学院研究生院(上海技术物理研究所);2016年
2 孙景旭;大口径光学有效载荷辐射定标技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2015年
3 张晶;用于中层大气临边探测的紫外全景成像仪研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2014年
4 任树锋;晶体双折射退偏器的光波叠加分析方法与优化设计[D];曲阜师范大学;2014年
5 赵发财;空间紫外大气遥感成像光谱仪偏振校正研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2012年
6 薛庆生;用于空间大气遥感的临边成像光谱仪研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2010年
7 贾辉;星载太阳紫外光谱监视器辐射定标的研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2004年
,本文编号:1339528
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/1339528.html