临撞下驾驶员本能性反应及其对下肢碰撞安全性的影响研究
发布时间:2017-12-27 23:30
本文关键词:临撞下驾驶员本能性反应及其对下肢碰撞安全性的影响研究 出处:《吉林大学》2017年博士论文 论文类型:学位论文
更多相关文章: 本能性反应 反应时间 骨肌特性 下肢损伤 膝部气囊
【摘要】:作为人-车共驾系统的重要组成部分,关于驾驶员行为的研究始终受到人们的广泛关注。临撞下驾驶员本能性反应是驾驶员在面对前方突然出现的紧急工况时的自发性行为,其对汽车安全系统的设计有着重要影响。本文对驾驶员的真实的本能性反应进行分析,并研究其对下肢碰撞安全性,如损伤与防护系统的影响,主要研究内容如下。首先,在驾驶模拟器中构造模拟碰撞场景,进行嵌入男性与女性真实驾驶员的驾驶行为试验,获得了驾驶员面对突然出现的不同紧急程度的临撞工况时的真实的本能性反应,包括驾驶员对车辆的控制特性以及驾驶员自身下肢的肌电特性。对肌电信号进行基于CIU联合算法的去噪处理。获得可用于表征本能性反应时间的肌肉激活时刻与可用于表征伴随着本能性姿态出现的骨骼肌肉特性的肌肉激活程度。其次,在驾驶员的反应时间的研究中引入了对其肌电特性考量,将本能性反应时间划分为预动作时间、肌肉激活时间、油门踏板行程时间与移动时间,并分析反应时间及其各组成部分受各因素的影响。结果表明,本能性反应时间在不同速度、相对距离、肌肉、性别间存在一定差异;在紧急工况发生后,胫骨前肌反应最快,因此驾驶员的制动意图可以由胫骨前肌的激活来表征;肌肉激活时间是由于肌电信号的引入使得在意图识别时被节省的时间,在引入肌电信号后,实现了对驾驶员制动意图的提前识别。结合驾驶员对车辆的控制参数,对驾驶员在碰撞发生时的下肢姿态进行划分,基于广义线性模型GLM构建了二级姿态分类器,实现了对碰撞发生时刻驾驶员制动姿态的准确识别,并分析驾驶员在不同紧急程度时的制动行为特性。结果表明,碰撞发生时,下肢既可能位于制动上,也有可能位于油门上或空中,紧急程度越大,驾驶员的下肢处于空中甚至是油门踏板上的可能性越大。然后,对处于不同骨骼肌肉状态、不同制动姿态的驾驶员下肢损伤进行碰撞仿真分析,研究其受肌肉激活程度与制动行为的影响。首先通过碰撞仿真分析,评价典型工况下处于准确肌肉激活程度时的驾驶员下肢损伤,将其与处于不激活、中值激活、最大激活状态时的下肢损伤进行对比,以研究肌肉激活程度对前碰撞时下肢损伤的影响,并研究准确描述碰撞发生时刻下肢肌肉激活的意义。然后,在碰撞仿真中考虑典型工况下驾驶员下肢分别位于油门、空中和制动上的三种工况,并对其进行损伤分析,同时,进一步对比了处于不同姿态时驾驶员右侧下肢与左侧下肢损伤的差异。结果表明,碰撞发生时,驾驶员并不总是处于中值激活或完全激活状态,而随着肌肉激活程度的增加,驾驶员下肢损伤可能性增大;脚部位于不同位置时,其下肢损伤存在一定的差异。同时,下肢主要肌肉的肌肉激活程度受紧急程度(速度、相对距离)、性别、姿态的影响。因此,为了更准确地研究驾驶员下肢的损伤,需要对其肌肉激活进行精确测量,并同时考虑不同紧急程度、姿态、肌肉、性别及下肢的影响。最后,综合考虑驾驶员在碰撞发生时真实制动行为与骨骼肌肉特性的对应关系,并结合驾驶员在此时对车辆的控制行为,研究驾驶员本能性反应对其下肢损伤的影响。结果表明,无论是对于使用或不使用膝部安全气囊而言,随着紧急程度的上升,各损伤参数基本呈现上升的趋势;而当紧急程度变化不大时,骨肌特性的作用开始凸显;由于踏板特性的影响,右腿的损伤参数基本大于左腿。考虑膝部气囊对下肢损伤的防护作用,构造损伤代理模型,对膝部安全气囊起爆时刻、质量流速比例系数、排气孔面积比例系数这三个关键参数进行基于响应面法与NSGA-II型遗传算法的多目标优化设计,下肢主要损伤参数在优化后得到不同程度的下降。考虑驾驶员本能性反应,并基于极限学习机ELM,分别对三个工况构建气囊关键参数预测模型,对真实工况下的最优气囊参数进行预测。
[Abstract]:As an important part of the human vehicle driving system, the research on driver behavior has always been widely paid attention to. The driver's instinctive response is a spontaneous behavior of the driver in front of a sudden emergency. It has an important influence on the design of vehicle safety system. In this paper, the real instinctive response of drivers is analyzed, and its impact on lower limb impact safety, such as injury and protection system is studied. The main contents are as follows. First of all, is constructed to simulate the collision scene in a driving simulator, driving behavior tests were embedded in male and female driver, the driver's face suddenly appeared different degree of emergency collision condition when the true instinct reaction, including the control characteristics of electromyography characteristics of the driver of the vehicle and the driver's leg. The EMG signal is de-noised based on the CIU joint algorithm. We get the muscle activation time that can be used to characterize the response time of instinct and the degree of muscle activation that can be used to characterize skeletal muscle characteristics accompanied by the instinctive posture. Secondly, the consideration of the characteristics of EMG is introduced in the research of driver's reaction time, the instinctive reaction time is divided into the pre movement time, muscle activation time, the accelerator pedal travel time and travel time, and by the analysis of each part of the influence factors and reaction time. The results show that the instinctive reaction time at different speed, relative distance, muscle, gender differences exist in the emergency condition; after the occurrence of the tibialis anterior muscle were the most quickly, so the driver's braking intention can be characterized by the activation of the tibialis anterior muscle; muscle activation time is due to the introduction of the EMG signal that saved in intent the recognition time, the introduction of EMG signal, to achieve the early recognition of the driver's braking intention. According to the control parameters of the vehicle, to divide the lower extremity posture when a collision occurs, the generalized linear model is constructed by GLM two level gesture based classifier, to achieve accurate identification of the occurrence time of the braking stance of collision, and analysis of braking behavior of the driver in the same degree of emergency. The results show that when the collision happens, the lower limbs may be on the brake or on the throttle or on the air. The greater the degree of emergency, the greater the possibility of the driver's lower limbs being in the air or even on the accelerator pedal. Then, we simulate and analyze the driver's lower extremity injuries in different skeletal muscle States and different braking posture, and study the influence of muscle activation and braking behavior. Firstly, through collision simulation analysis, evaluation of typical conditions in accurate muscle activation of lower extremity injury degree of the driver, the activation, activation, and value in the lower extremity injury maximum activation state compared to study the influence of muscle activation of lower extremity injury before the collision, and the collision time of accurate description of lower limb muscles the significance of activation. Then, in the crash simulation, the three working conditions of driver's lower limbs in throttle, air and brake are considered, and the damage is analyzed. At the same time, the difference between the right lower extremity and the left lower extremity of the driver is compared. The results showed that when the collision occurred, the driver was not always in the median activation or fully activated state, and with the increase of muscle activation, the possibility of lower extremity injury increased. At the same time, the degree of muscle activation in the main muscles of the lower extremities is affected by the degree of urgency (speed, relative distance), sex, and posture. Therefore, in order to study the injury of the driver's lower limbs more accurately, we need to measure the muscle activation accurately, and consider the different emergency degree, posture, muscle, gender and the influence of the lower extremities. Finally, considering the corresponding relationship between the real braking behavior and the skeletal muscle characteristics when driving, the driver's instinctive response to lower extremity injury is studied based on the driver's control behavior at this time. The results show that, either for use or not to use the knee airbag, with increasing urgency, the damage parameters shows a rising trend; and when the little change of urgency, the role of bone muscle properties began to highlight; due to the effect of pedal characteristics, right leg injury parameters is greater than the left leg. Considering the knee airbag protective effect on lower extremity injuries, agent model of structural damage, the three key parameters of time, mass flow ratio, exhaust hole area ratio coefficient on the knee airbag detonation of the multi-objective optimization design method and NSGA-II genetic algorithm based on response, the main damage parameters have different degrees of decline in the lower extremity after optimization. Considering the driver's instinctive response, and based on the extreme learning machine ELM, the prediction model of the key parameters of airbags is built on three conditions respectively, and the optimal airbag parameters under real conditions are predicted.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:U467.14
【相似文献】
相关期刊论文 前10条
1 王武宏;驾驶员失误机理辨识的可靠性静态模型[J];中国公路学报;1995年02期
2 连跃华;;驾驶员应防止情绪波动[J];汽车维护与修理;2000年02期
3 王荣本,郭克友,储江伟,初秀民;适用驾驶员疲劳状态监测的人眼定位方法研究[J];公路交通科技;2003年05期
4 任有;许洪国;李显生;王维旭;许骏;;仿真追尾碰撞中驾驶员转向反应模型研究[J];交通运输系统工程与信息;2007年03期
5 马艳;王令;郭华;;驾驶员交通心理划分与个性化训练研究[J];公路交通科技(应用技术版);2008年S1期
6 李金库;;驾驶员综合特征对行车控制与紧急度判断的影响[J];交通科技与经济;2008年03期
7 高菲;李向瑜;段立飞;王兵;;驾驶员前视行为特性的动态变化规律[J];汽车工程师;2010年02期
8 张敬磊;王晓原;;驾驶员行为仿真模型研究进展[J];山东理工大学学报(自然科学版);2011年01期
9 马爱静;毛建国;沈\,
本文编号:1343665
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/1343665.html