基于全表面测量的三轴土样剪切破坏过程研究
本文关键词: 全表面数字图像测量 三轴试样 剪切带 应变局部化 损伤破坏 出处:《大连理工大学》2017年博士论文 论文类型:学位论文
【摘要】:土体剪切带的形成和土的渐进破坏理论是岩土工程界广泛关注的课题。土体的剪切带是一种典型的应变局部化现象,应变局部化带(剪切带)的产生意味着土体结构发生破损、开始失去稳定性,也标志着土工结构物即将发生失稳与破坏。因此,对土体剪切带问题的研究越来越受到国内外学者的重视。目前,对剪切带问题的研究主要包括理论分析、数值模拟和试验研究三个方面。而基于理论分析和数值模拟的结果大多与试验观测有一定的偏差。对剪切带的变形全过程只有定性的分析,也未给出破坏过程的定量分析标准。其次,现有土体本构模型的建立是将三轴试样视为单元体,而应变局部化现象表明土体的变形是不均匀的,特别是在土体结构产生剪切带之后。因此,在分析具有变形局部化特点的土样时,该类模型则不再适用。本论文主要是围绕这两个问题采用全表面数字图像测量系统对试样的整体变形及局部变形进行实时同步测量分析,为土体剪切带问题的研究提供了有效的手段。论文首先选取标准砂、硅微粉、桂平粘土及高岭土材料进行三轴压缩试验,通过全表面变形数字图像测量系统可得到试样整体和试样表面任意标记点处的应力应变关系曲线及土样全表面的位移场图和应变场图,借助于位移场图和应变场图可以清晰地观察和分析试样的变形情况。我们发现:在试验初始时刻,试样变形比较均匀,试样表面没有明显的局部变形破坏。随着试验的进行,试样出现了变形的不均匀趋势,进而出现局部剪切破坏区域。此后,破坏区域不断地延伸、扩展,最终形成贯穿试样的剪切带。由此,试样的变形分成两种类型:一种是位于剪切带内的土样,变形继续增加、应力保持不变,其受力变形状态类似于滑块的滑动摩擦;另一种是位于剪切带外的土样,在试验后期其变形与受力都保持不变,基本呈现一个近似于零应变增量的状态。此时,试样的变形大多集中在剪切带的内部,主要来源于被剪切带分成两部分的土体之间的滑动。三轴试样的剪切带在何时开始产生、何时完全形成以及其发展变化的规律如何,这个问题一直困扰着土力学界的专家学者。本文中作者根据全表面图像测量技术得到的试样上任意一点处的应变值,定义了两种判别剪切带开始形成及完全形成时刻的方法。第一种是剪切带的应力水平判别方法,即通过实测的试样弹性模量和应变值,得到试样上各标记点的应力。定义应力水平为S=qp/qf,当S=1时,表明试样在该处出现剪切破坏,S=1等值线所包围的区域就是试样的剪切破坏带;第二种是剪切带的应力应变联合判别方法,即将每组试验中土样表面192个标记点中最晚出现轴向应变拐点的时刻作为剪切带完全形成的时刻点;采用应力判断的方法,将土样上各标记点应力值最早达到峰值应力的时刻作为剪切带开始发生的时刻点。应变局部化现象表明,土体的变形是不均匀的,并且在试验的不同阶段试样的变形规律也不尽相同。通过分析土样的局部变形特性及不同阶段的变形机理,把土样的受力变形过程和应力应变曲线分成破坏前阶段、破坏阶段和破坏后阶段。在破坏前阶段,土样各部分变形大体均匀、性质相同,基本满足同一应力应变曲线,土样可以被看作是一个单元体。在破坏阶段,土样从某一点(REV)开始出现破坏并逐渐发展,最后形成贯穿的剪切带,观测到的土样整体的变形是剪切带内和剪切带外土体变形的综合结果。在破坏后阶段,土样的变形源于土体沿着剪切带的滑动,即上下两个斜切体沿着剪切带的滑移,不能再据此计算土样的"应变"。三轴试样从试验初始均匀变形至最后被剪切带完全贯穿直至破坏,其整个变形发展情况反映出了试样结构体的损伤破坏过程。为了分析土样在剪切过程中结构损伤破坏的变化规律,定义了描述土样损伤发育程度的损伤破坏变量W,建立土样的剪切损伤破坏演化方程。采用试样橡皮膜上各标记点的轴向应变的方差来定义剪切带完全贯穿试样之前试样的损伤破坏变量,通过分析损伤破坏变量的规律特性得到试样的损伤状态。在三轴剪切试验过程中,土样的类型、试验围压等都会对损伤演化过程产生影响。剪切损伤破坏分析中,当试样的剪切带完全形成时,认为土样达到完全破损状态,此时W = 1;在试验开始至剪切带完全形成的过程中,W的数值满足从0到1逐渐递增的规律。
[Abstract]:With the soil formation and soil shear failure theory is widely concerned in the field of geotechnical engineering subject. The shear band is a kind of typical strain localization phenomenon, strain localization band (shear zone) which means the soil structure damaged, began to lose stability, also marks the impending loss of soil structure stability and destruction. Therefore, the research on shear band problem more and more attention by scholars. At present, the research on the shear band problems mainly include theoretical analysis, numerical simulation and Experimental Research on three. Theoretical analysis and numerical simulation results based on experimental observation and mostly has a certain deviation of. The whole process is only qualitative shear deformation and failure process are also not quantitative analysis standard. Secondly, the establishment of constitutive model of soil is three existing specimen as a unit, and should become the local The phenomenon shows that the deformation of soil is not uniform, especially after the formation of shear bands in soil structure. Therefore, with the characteristics of soil deformation localization in the analysis, the model is no longer applicable. This thesis mainly adopts full digital image measurement system, the whole surface deformation of the specimen and the local deformation analysis of real time synchronization the measurement on these two issues, provides an effective means for the study of shear band problems. Firstly, the criteria for the selection of sand, silica powder, Guiping clay and kaolin materials were three axial compression test, deformation of digital image measurement system can get the whole sample and the sample surface marker points of stress strain curves and the soil displacement field and strain field of surface figure figure through the whole surface, with the help of the displacement field and strain field map map can clearly observe and analyze the deformation of the sample we sent. Now: in the initial test, the specimen deformation is relatively uniform, no obvious local deformation of specimen surface damage. During the trial, the sample appeared uneven deformation trend, and regional local shearfailure. Since then, failure zone extends continuously, expansion, eventually forming shear through specimen zone. Thus, the sample the deformation is divided into two types: one is located in the shear zone, soil deformation, stress continues to increase, remain unchanged, the stress and deformation state is similar to the slider sliding friction; the other one is located in the soil shear bands, at the end of the experiment, the deformation and stress are unchanged, showing an approximate to zero strain increment state. At this time, the deformation of the specimen are mostly concentrated in the inner shear zone, mainly from sliding between soil is divided into two parts of the shear zone. Three axis specimen shear zone when the beginning of birth Students, when fully formed and the laws of its development and change, the problem has been plagued by experts and scholars of soil mechanics. This paper based on the strain of an arbitrary point samples obtain full surface image measurement technology on the value, defines two kinds of discriminant of shear band formation and formation method. The first time is shear stress level discrimination method, namely through the specimen modulus and strain measured values of stress markers on each specimen. The definition of stress level is S=qp/qf, when S=1, the sample shear failure in the shear failure, surrounded by S=1 contour area is the sample zone the second is; shear zone should be combined with discriminant method of stress and strain, the soil surface of each test 192 marks the latest axial strain inflection point time as the formation of shear band point; the Method of stress judgment, the marks of soil stress on the value of the first peak stress time as the shear band occurs. The strain localization phenomenon, the deformation of soil is not uniform, and the deformation law in different stages of the test are not the same. The deformation mechanism analysis of local deformation characteristics of soil samples and in different stages, the soil samples by the process and the stress-strain curve is divided into stages before the failure of deformation, failure stage and failure stage. After the destruction before the stage, the soil deformation in uniform, similar in nature, basically meet the same stress strain curve, soil can be is regarded as a unit. In the failure stage, soil samples from a point (REV) began to undermine and gradually development, finally formed through the shear zone, the observed soil overall deformation is outside the shear band and the change of soil The comprehensive results form. After the destruction stage, the source of soil sliding deformation in the soil along the shear zone, the upper and lower two bevel along the slip of shear bands, cannot calculate the soil "strain". Three specimen from initial to final test of uniform deformation by shear zones thoroughly destroyed the development of the whole deformation, reflect the failure process of specimen structure damage. In order to analysis of the change of structural damage in the shearing process of soil samples, soil samples is defined to describe the damage degree of the development of the damage variable W, the establishment of soil shear damage and failure evolution equations. Using the variance of axial strain of each marker sample the rubber membrane on the definition of shear band through the sample before sample damage variables, through the analysis of characteristics of damage variables are damage damage state of the sample. The test process in the three axle shear In the type of soil, confining pressure will affect the damage evolution process. The shear damage analysis, when the specimen is in the formation of shear band, that soil completely damaged, at W = 1; in the process of testing to the formation of shear band in W numerical meet from 0 to 1 gradually increasing regularity.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TU43
【相似文献】
相关期刊论文 前10条
1 J.P.Poirier;郑理珍;;无震延性剪切带的动力模式[J];地震地质译丛;1981年01期
2 宋鸿林;剪切带研究现状及内容[J];地质科技情报;1982年01期
3 王焕金;;对《剪切带的几何特征》一文的几点意见[J];地质论评;1985年06期
4 白以龙,郑哲敏,俞善炳;关于热-塑剪切带的演变[J];力学学报;1986年S2期
5 J.Ingles;王焕金;;韧性单剪剪切带中的理论和天然应变模式[J];地震地质译丛;1987年02期
6 Hudleston,P.J.;赵国春;;剪切带中的褶皱[J];世界地质;1991年01期
7 宣贵金,刘同凯;万家寨水利枢纽坝基剪切带岩样钻取技术[J];西部探矿工程;2002年S1期
8 J.G.Ramsay;徐树桐;;剪切带的几何性质[J];地震地质译丛;1982年05期
9 张术清;;剪切带的研究现状及其意义[J];世界地质;1984年02期
10 卢华复;董火根;吴葆青;候玉宾;;脆性剪切带中的R面和P面[J];天然气工业;1985年04期
相关会议论文 前10条
1 余天堂;龚志伟;;土体剪切带演化的扩展有限元法模拟[A];中国力学大会——2013论文摘要集[C];2013年
2 董建国;徐建明;;影响剪切带形成的因素的探讨[A];2004年度上海市土力学与岩土工程学术年会论文集[C];2004年
3 孙强;胡秀宏;赵海军;;基于力矩与地下水的粘性土剪切带倾角分析[A];第一届中国水利水电岩土力学与工程学术讨论会论文集(上册)[C];2006年
4 张义同;齐德tD;杜如虚;任述光;;基于颗粒流模型和两相平衡的砂土剪切带预测[A];中国化学会、中国力学学会第九届全国流变学学术会议论文摘要集[C];2008年
5 康继武;;煤层中顺层剪切带及其构造群落以及它们在瓦斯地质研究中的意义[A];瓦斯地质新进展[C];2001年
6 董建国;陈祥达;袁聚云;;上海黏性土剪切带形成的数值模拟分析[A];第九届全国岩土力学数值分析与解析方法讨论会论文集[C];2007年
7 崔军文;;哀牢山韧性平移剪切带的特征[A];中国地质科学院文集(19)[C];1989年
8 王泽利;王志华;王为湖;刘继权;洪德成;庄立建;张振山;;胶西北河东金矿床剪切带控矿机制分析[A];第八届全国矿床会议论文集[C];2006年
9 王居里;王守敬;;含金剪切带蚀变特征及其与金成矿的关系——以新疆天格尔金矿带为例[A];第八届全国矿床会议论文集[C];2006年
10 张翼飞;;云南东川昆阳群中含金剪切带型金矿简介[A];峨眉地幔柱与资源环境效应学术研讨会论文及摘要[C];2003年
相关博士学位论文 前6条
1 王晓颖;锆及锆合金动态力学性能和绝热剪切行为研究[D];燕山大学;2015年
2 刘港;基于全表面测量的三轴土样剪切破坏过程研究[D];大连理工大学;2017年
3 刘明涛;剪切带演化模型及其在模拟柱壳内外爆剪切失稳中的应用[D];中国科学技术大学;2014年
4 叶朝汉;软土剪切带试验及其应用的研究[D];同济大学;2007年
5 喻葭临;土中剪切带扩展机理研究和扩展过程模拟[D];清华大学;2009年
6 董汉文;东喜马拉雅构造结墨脱剪切带的研究[D];中国地质科学院;2014年
相关硕士学位论文 前10条
1 黄文博;砂土介质剪切带演化及其特征的离散元方法模拟[D];华南理工大学;2015年
2 商立凯;饱和度和成样方法对细砂应力应变特性及剪切带的影响研究[D];大连理工大学;2015年
3 张丽娟;砂土平面应变试验研究[D];大连理工大学;2015年
4 王广;内蒙古苏尼特左旗巴彦乌拉韧—脆性剪切带变形特征[D];石家庄经济学院;2015年
5 张卫中;岩石变形剪切带形成过程的实验研究及数值模拟[D];重庆大学;2004年
6 曾毅;两种动态加载条件对7075铝合金中剪切带自组织与损伤的影响[D];中南大学;2008年
7 王志新;平面应变条件下的裂隙性黄土剪切带试验研究[D];长安大学;2008年
8 孙晓东;Vit1非晶合金的高压扭转变形及剪切带演化[D];燕山大学;2014年
9 刘会彬;西秦岭北缘新阳—元龙韧性走滑剪切带特征及其地质意义[D];长安大学;2007年
10 高军程;基于数字图像测量系统的成样方法对细砂各向异性及剪切带影响的研究[D];大连理工大学;2013年
,本文编号:1534371
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/1534371.html