当前位置:主页 > 硕博论文 > 工程博士论文 >

柔性碳纳米纤维基高性能超级电容器电极材料的制备研究

发布时间:2018-03-17 22:02

  本文选题:碳纳米纤维 切入点:超级电容器 出处:《东华大学》2017年博士论文 论文类型:学位论文


【摘要】:近年来,超级电容器作为一种极具潜力的储能器件已成为科研人员关注的焦点。在不降低超级电容器能量和功率密度的前提下,研究人员对提高超级电容器电极性能的研究上已付出巨大努力,包括设计有效方法开发出高效柔性的电极材料,以及设计合适的超级电容器结构,即对称或非对称超级电容器。本文概括了关于高效柔性超级电容器的现有理论背景和近期研究进展,并对其影响因素、面临的挑战和前景进行了深入探讨。此外,当前工作为设计下一代柔性超级电容器尤其是基于各种商用碳纳米纤维材料的超级电容器提供指导。论文主要内容如下:1.文中,我们开发了一项有效技术制备具有机械强力和柔性的杂化膜,该杂化膜由Co_3O_4纳米粒子(NPs)和碳纳米纤维(CNF)结合。定量的孔径分布和分形分析表明,该杂化膜具有可调的多孔结构和高比表面积,比表面积达483m2/g。此外,通过该技术制备的杂化膜在5m V/s的电流密度下比电容高达911F/g,在1M H_2SO_4溶液中超过1000次循环后,比电容仍保留76%。这些高度灵活和更具经济效益的制造技术开拓了质轻柔性超级电容器电极在未来储能材料中的发展。2.利用镍钴、碳纳米管与CNF结合(NiCo_2O_4/CNTs CNF),通过静电纺丝和碳化技术调节介孔结构,制备具有高度柔性结构的复合CNF。制备的复合膜具有合理的比电容,即使在1M KOH溶液中循环500次,在电流密度为1A/g下比电容仍达220F/g。这种具有经济效益的杂化膜的成功合成拓展了其在各领域的应用。3.为了柔性杂化碳纳米纤维膜的发展,通过静电纺丝和静电喷射技术,我们制备了氧化铁掺杂的CNF和氧化锰(Fe@CNFMn)。BET分析和定量的孔径分布揭示了Fe@CNFMn具有可调的孔结构,其比表面积为162m2/g,孔隙体积为0.254cm3/g。制备的膜展现出优异的电化学性能,比电容为306F/g,在1M KOH溶液中经500次循环后,仍有81%保留。此外,该固态超级电容器在弯曲到90°后,其比电容仍无明显变化。这项工作为生产具有高度柔性和优异性能的纤维纺织材料用于超级电容器电极开辟了新的路线。4.为解决先进技术和各类便携式电子设备,我们报告了一种具有优异电化学性能的高性能质轻且柔性的超级电容器用于可穿戴电子设备。利用炭黑、CNF以及通过静电纺丝和静电喷射技术制备的聚苯胺(CB@CNF/PANI),制备核-壳结构的杂化膜。此外,CB@CNF/PANI复合纳米纤维的比表面积为333m2/g、微孔孔隙率为75.7%。由杂化膜制得的超级电容器具有高度稳定的电化学性能,在0.5A/g下比电容为501.6F/g,在1000次循环后仍有92%存留。此外,当其被弯曲不同的角度直到达到180°时,在特定电容中观察不到明显变化。这简单的三步(即静电纺丝、碳化和静电喷射)制备技术将开辟一种质轻柔性的超级电容器用于未来储能领域。文中阐述了制造高效、高性能超级电容器电极材料用的高度柔性CNF的结构调控规律。这些高度灵活和具经济效益的制备技术有望拓展轻质柔性超级电容器电极在未来储能材料中的应用。
[Abstract]:In recent years, the super capacitor as a potential energy storage device has become the focus of attention of researchers. In the premise of not reducing the super capacitor energy and power density, the researchers have been making great efforts to improve the performance of the super capacitor electrode on the package to develop a highly efficient and effective design method of the flexible the electrode material, and appropriate design of super capacitor structure, namely, symmetric or asymmetric supercapacitor. This paper summarizes the existing theoretical background for a flexible and efficient super capacitor and the recent research progress, and the influence factors, challenges and prospects are discussed. In addition, the current work for the next design the flexible generation of super capacitor especially provide super capacitor of various commercial carbon nano fiber materials. Based on the main contents of this paper are as follows: 1. in this paper, we developed an effective technology The preparation of mechanical strength and flexibility of the hybrid membrane, the hybrid membrane by Co_3O_4 nanoparticles (NPs) and carbon nanofibers (CNF) with pore size distribution and fractal. The quantitative analysis showed that the hybrid membrane has adjustable porous structure and high specific surface area, specific surface area of 483m2/g. in the hybrid membrane by technology prepared at current density of 5m V/s under the specific capacitance as high as 911F/g, more than 1000 cycles in 1M H_2SO_4 solution, the specific capacitance retained 76%. of these highly flexible and cost-effective manufacturing technology to develop the lightweight flexible supercapacitor electrode in the future development of.2. energy storage materials by nickel cobalt, carbon nanotubes combined with CNF (NiCo_2O_4/CNTs CNF), adjust the mesoporous structure by electrospinning and carbonization technology, composite preparation of CNF. composite films were prepared with highly flexible structure with reasonable specific capacitance, even in 1M KOH solution 500 cycles, the successful synthesis of the hybrid membrane at 1A/g current density specific capacitance still reached 220F/g. which has the economic benefits of expanding its application in various fields for the development of flexible.3. hybridized carbon nanofibers by electrospinning, and electrostatic spraying technology, we prepared CNF doped iron oxide and manganese oxide were prepared (the pore size distribution of.BET Fe@CNFMn) and quantitative analysis revealed that Fe@CNFMn has a tunable pore structure, the surface area of 162m2/g, pore volume for the preparation of 0.254cm3/g. film exhibits excellent electrochemical performance. The specific capacitance of 306F/g, 1M in KOH solution after 500 cycles, there are still 81% reservations. In addition, the solid super capacitor to 90 DEG in bending, the specific capacitance is still no significant change. The fiber textile material which has high flexibility and excellent performance for the production of super capacitor electrode has opened up a new route for.4. Advanced technology and all kinds of portable electronic devices, we report an excellent electrochemical performance of supercapacitor with high performance lightweight and flexible for wearable electronic devices. The use of carbon black, and CNF by electrospinning and electrostatic spraying technology for preparation of polyaniline (CB@CNF/PANI), preparation of hybrid membrane with core-shell structure. In addition, CB@CNF/PANI composite nano fiber specific surface area of 333m2/g and micro porosity of super capacitor 75.7%. by hybrid membrane prepared with electrochemical properties of highly stable, 501.6F/g capacitance in 0.5A/g, after 1000 cycles are still 92% remains. In addition, when it is bent in different angle until it reaches 180 degrees, there were no changes in specific capacitance. These three simple steps (i.e., electrospinning, carbonization and electrostatic spray) preparation of super capacitor technology will open up a light flexible for the future The field of energy storage. The paper illustrates the manufacture efficiency, structure regulation of highly flexible CNF high performance supercapacitor electrode materials. These highly flexible and cost-effective preparation technology is expected to expand the light flexible supercapacitor electrode in the future application of energy storage materials.

【学位授予单位】:东华大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TM53

【相似文献】

相关期刊论文 前10条

1 ;我国第一种国产超级电容器通过鉴定[J];测控技术;2000年12期

2 刘建新;超级电容器在直流电源系统中的应用[J];华东交通大学学报;2002年03期

3 桂长清;新型贮能单元超级电容器[J];电池工业;2003年04期

4 ;超级电容器[J];电源世界;2004年03期

5 文建国,周震涛,文衍宣;超级电容器材料研究的辩证思维[J];东莞理工学院学报;2004年01期

6 李荐,钟晖,钟海云,戴艳阳,温俊杰;超级电容器应用设计[J];电源技术;2004年06期

7 Bobby Maher;;超级电容器简介[J];今日电子;2006年01期

8 王鑫;;超级电容器在汽车启动中的应用[J];国外电子元器件;2006年05期

9 Matt Reynolds;;替代能源中的超级电容器介绍[J];今日电子;2006年07期

10 陈新丽;李伟善;;超级电容器电极材料的研究现状与发展[J];广东化工;2006年07期

相关会议论文 前10条

1 马衍伟;张熊;余鹏;陈尧;;新型超级电容器纳米电极材料的研究[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年

2 张易宁;何腾云;;超级电容器电极材料的最新研究进展[A];第二十八届全国化学与物理电源学术年会论文集[C];2009年

3 钟辉;曾庆聪;吴丁财;符若文;;聚苯乙烯基层次孔碳的活化及其在超级电容器中的应用[A];中国化学会第15届反应性高分子学术讨论会论文摘要预印集[C];2010年

4 赵家昌;赖春艳;戴扬;解晶莹;;扣式超级电容器组的研制[A];第十二届中国固态离子学学术会议论文集[C];2004年

5 单既成;陈维英;;超级电容器与通信备用电源[A];通信电源新技术论坛——2008通信电源学术研讨会论文集[C];2008年

6 王燕;吴英鹏;黄毅;马延风;陈永胜;;单层石墨用作超级电容器的研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年

7 赵健伟;倪文彬;王登超;黄忠杰;;超级电容器电极材料的设计、制备及性质研究[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年

8 张琦;郑明森;董全峰;田昭武;;基于薄液层反应的新型超级电容器——多孔碳电极材料的影响[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年

9 马衍伟;;新型超级电容器石墨烯电极材料的研究[A];第七届中国功能材料及其应用学术会议论文集(第7分册)[C];2010年

10 刘不厌;彭乔;孙s,

本文编号:1626665


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/1626665.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f6d8d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com