当前位置:主页 > 硕博论文 > 工程博士论文 >

蒲绒纤维集合体油液吸附特性与油水分离性能研究

发布时间:2018-03-30 14:48

  本文选题:蒲绒纤维 切入点:结构性能 出处:《东华大学》2017年博士论文


【摘要】:每年在石油开采与加工运输、机械制造、纺织染整等工业化生产领域都会源源不断地产生大量含油废水。日常生活中也会有含油污水的产生,如厨房油烟、厕所污水、人体油脂等,其中工业化所产生的油污染程度尤为严重,有些已造成了环境的不可逆破坏。有些天然纤维材料具有吸油能力、可再生、可生物降解等优点,越来越受到吸油领域的关注,其中蒲绒纤维就属于这类资源,但目前大部分蒲绒纤维自生自灭,未得到充分利用,造成了资源的很大浪费。本论文以蒲绒纤维为研究对象,首先从蒲绒单根纤维结构与性能的基础研究着手,阐述纤维结构和物理化学性能特点,对比几种天然纤维集合体对油液吸附性能;然后通过气流法与热粘法对蒲绒纤维进行三维滤芯的制作,设计与搭建基于蒲绒滤芯的油水分离装置,通过结合蒲绒纤维三维结构成型设计,最终同步实现油水分离、蒲绒滤芯离心脱油后循环利用和油液再回收功能,为蒲绒纤维在油水分离领域应用提供依据和参考。本文主要工作内容与结论包括:1.蒲绒纤维的形态结构与性能利用扫描电镜和三维视频显微镜观测蒲绒纤维表面和截面结构;红外光谱仪测定蒲绒红外吸收光谱,测定其主要基团和组成物质;用索氏提取法测试其表面蜡质含量等。采用oca15ec光学接触角测量仪测试评价油液在蒲绒纤维表面浸润性能,以几何平均接触角法计算纤维的表面自由能及其极性和非极性分量,分析蒲绒纤维的浸润性能。结果发现:蒲绒纤维形态结构与羽绒相似为朵状纤维,每一朵内所含单根纤维的根数范围在30~80根,平均长度为7.9mm,平均径向宽度为14.3μm;分叉出的线形纤维具有类似竹子的纵向形状结构有若干个开放式空腔,构成蒲绒纤维独特的结构,可以帮助其保持大量静止的空气,增加蒲绒纤维比表面积,有利于油液的吸附和储存,也增强了蒲绒的浮力性能;蒲绒纤维与木棉纤维有相近的成分,同为纤维素纤维的一种,脂蜡质超过10%。蒲绒纤维与水的接触角约为130°,与植物油的接触角约为60°,说明蒲绒纤维是亲油疏水性纤维。油液在蒲绒纤维层上动态铺展过程分为三个阶段,0~1000ms为快速铺展阶段,1000~2000ms为缓慢铺展阶段,2000ms以后趋于平稳阶段。蒲绒纤维表面自由能为45.64mn/m,其中极性分量为2.69mn/m,色散分量为42.94mn/m,色散与极性比值15.96,也表明蒲绒纤维有很好的疏水亲油性能。2.蒲绒纤维集合体油液吸附性能采用吸油、保油和吸油浮力性能指标评价了蒲绒散纤维的吸油性能,并与木棉散纤维的吸油性能进行对比分析;通过气流成网与热粘法制作的蓬松蒲绒纤维絮片进行了吸油性能测试,并与木棉纤维絮片的吸油性能进行对比分析。结果发现:蒲绒散纤维吸油倍率11.91g/g,为自身质量的近12倍,但低于木棉和棉散纤维,木棉纤维25.79g/g,棉纤维14.98g/g。而通过气流成网与热粘法制作的蒲绒蓬松絮片吸油倍率为48.40g/g,吸油倍率增加了3倍;木棉蓬松絮片为72.30g/g,吸油倍率增加了2倍。蒲绒散纤维与木棉纤维保油率均在90%左右,棉纤维保油率为80%以上,说明这三种纤维均具有良好的保油性能。蒲绒、木棉和棉散纤维团油液浮力性能:在相同条件下三种纤维体积被浸没一半的时间均为30s左右;而全部浸没时间相差比较大,蒲绒和棉纤维团分别为90s和94s,比较接近,而木棉纤维需要147s;完全浸没在油液中蒲绒和木棉散纤维呈悬浮状态,棉纤维团沉底。3.油水分离装置与滤材制备提出了一种集油水分离、纤维滤芯离心脱油后循环利用和油液再回收功能于一体的油水分离装置,其中锥形内筒是分离器的核心部件,它使得油液在离心力的作用下沿着锥形内壁逆流至顶端有均匀对称的槽口处,从而进入内筒与外筒之间的储油区,实现了油液收集。采用soildworks软件设计了油水分离器的各零件和全部装配关系,试制和搭建出平稳运行、可以实现三大功能的油水分离试验机。通过气流成网法制备出蒲绒纤维与热熔粘结纤维混合均匀并三维随机分布的纤网,放入三维模具进行干热处理制造出结构性能稳定、高孔隙率的圆台形油水分离滤芯。蒲绒滤芯与上述设计试制机械装置结合实现对油水混合物的有效过滤。利用柴油、植物油反复试验,确定三维滤芯体积密度、流速、装置转速以及离心时间等试验参数。4.蒲绒滤芯油水分离效果评价采用离心率、油液回收率、吸油倍率、吸水倍率、残油倍率、过滤效率来评价三维蒲绒滤芯油液分离效果,油液和水分别以7.5ml/min和750ml/min的流速进入三通管混合,通过细孔喷头喷进锥形内筒里,蒲绒三维滤芯采用0.01g/cm~3、0.02g/cm~3和0.03g/cm~3等3个不同的体积密度。结果发现:在蒲绒三维滤芯相同体积密度条件下,植物油突破时间较柴油长,且随着滤芯的体积密度的增加,两种油液的突破时间差距增大,在0.01g/cm~3时植物油突破时间为40min比柴油多10min,对植物油吸油倍率高于柴油的吸油倍率,在0.01g/cm~3时植物油最高达到22.21g/g,而柴油为18.12g/g。随着纤维体积密度增加对两种油液吸油倍率均呈减小趋势,吸水倍率变化不大,基本维持在自身重量的3倍左右。在油液回收方面,在体积密度0.01g/cm~3、0.02g/cm~3和0.03g/cm~3条件下植物油回收率分别为92.56%,90.18%和89.42%,柴油回收率分别为90.51%,86.90%和83.71%,两种油液的回收率都达到83%以上,残存的油液仅相当于所吸收油液的植物油不超过10%,柴油最大约为16%。蒲绒纤维滤芯对于植物油来讲可以至少3次,柴油至少4次循环使用。蒲绒三维滤芯和木棉三维滤芯都是优良的天然油液吸附材料,蒲绒纤维的首次收集到油液量大于木棉,但随着循环次数增加,蒲绒纤维的收集量均低于木棉。5.影响蒲绒纤维集合体油水分离因素纤维与油液性质、集合体结构与密度、混合液浓度与流速等因素,都会对蒲绒纤维集合体油水分离效果产生影响。通过采用不同油液浓度、不同材料及油水混合流速度,优化设计参数,实现吸油量和分离效率的最大化,同时实现不同纤维滤芯多次利用。
[Abstract]:Every year in the oil exploitation and transportation and processing, machinery manufacturing, industrial production and other fields of textile dyeing and finishing will Everfount to produce a large number of oily waste water in daily life. There will be oily wastewater, such as kitchen, toilet water, body oils, the oil pollution caused by industrialization is particularly serious, some are caused by environmental the irreversible damage. Some natural fiber materials with oil, renewable, biodegradable and other advantages, has attracted more and more attention in the field of oil, the cattail fiber belongs to this kind of resources, but the majority of cattail fiber has not been fully used, emerge of itself and perish of itself, caused a great waste of resources. In this paper, for the cattail fiber the object of study, first from the basic structure and properties of Purong single fiber to fiber paper structure and physical and chemical properties of several kinds of natural fiber, than the set Fit on the adsorption performance of the oil production; then through the air and hot sticking method for three-dimensional filter of cattail fiber, design and build the oil-water separation device based on filter through a combination of cattail, cattail fiber forming three-dimensional structure design, finally realize synchronous oil-water separation, centrifugal oil filter performance after recycling and oil recovery function for, cattail fiber application in oil-water separation field provide the basis and reference. The main contents and conclusions are as follows: the structure and properties of morphology by scanning electron microscopy and three-dimensional video microscope observation Pu cashmere fiber surface and cross section structure of the 1. cattail fiber; infrared spectroscopy determination of cattail infrared absorption spectra, determination of the main groups and substance use cable; extraction method to test the surface wax content. Using oca15ec optical contact angle measurement for the evaluation of oil in the cattail fiber surface wettability can, The geometric mean method to calculate the contact angle of fiber surface free energy and its polar and non polar component analysis, wettability of cattail fiber. It is found that the cattail fiber morphology and similar to feather flower shaped fiber, single fiber contained in every flower in the root number in the range of 30~80, the average length is 7.9MM. The average radial width of 14.3 mu m; longitudinal linear shape structure with similar bamboo fiber branch with a plurality of open cavity, the structure of cattail fiber unique, can help to keep a large number of static air, increase the cattail fiber specific surface area, is conducive to the adsorption and storage of oil, but also enhance the buoyancy performance cattail; cattail fiber has the similar composition and kapok fiber, with a cellulose fiber, wax over 10%. cattail fiber and water contact angle of about 130 degrees, vegetable oil and the contact angle of about 60 degrees, that cattail The fiber is hydrophobic fibers. The oil in the cattail fiber layer dynamic spreading process is divided into three stages, 0~1000ms for fast spreading phase, 1000~2000ms is slowly spreading stage after 2000ms stable stage. The surface free energy of 45.64mn/m cattail fiber, the polar component of 2.69mn/m, 42.94mn/m dispersion and dispersion components. Polar ratio 15.96, also shows that there is a good natural fiber hydrophobic lipophilic properties of.2. oil adsorption properties of cattail fiber aggregate with oil, oil retention and oil buoyancy performance index to evaluate the absorption properties of cattail loose fiber and kapok, and scattered the absorption properties of fiber were analyzed; through the air into a fluffy cattail fiber wadding net with the hot sticking method of oil production and performance testing, and the absorption properties of kapok fiber wadding were analyzed. The results showed that the cattail fiber oil absorption rate of 11.91g/g, since Nearly 12 times the body quality, but lower than that of kapok and loose cotton fiber, kapok fiber 25.79g/g, cotton fiber and 14.98g/g. by flow into cattail oil absorbency made fluffy flakes and hot sticking method for 48.40g/g, oil absorption rate increased by 3 times; the kapok fluffy flakes as 72.30g/g, oil absorption rate increased 2 times. Cattail fiber with the kapok fiber oil retention rate of around 90%, the cotton fiber oil retention rate is above 80%, that is oil holding good performance of the three kinds of fibers. Cattail, kapok and cotton fiber group oil buoyancy performance: in the three kinds of fiber volume under the same conditions is immersed in half the time are about 30s; total immersion time is larger, relatively close to the cattail and cotton fiber group were 90s and 94S, and 147s of kapok fiber; completely immersed in the oil and natural kapok fiber was suspended and cotton fiber group.3. bottom oil and water separation device and filter The preparation of a set of oil-water separation, oil-water fiber filter centrifugal oil after recycling and recycling functions of the separation device, the conical inner cylinder is the core component of the oil separator, it makes the notch under the action of centrifugal force along the tapered wall to the top with symmetrical countercurrent. To enter into the space between the inner cylinder and the outer cylinder of the storage area, the oil separator is designed. Collect all the parts and all the assembly relation by using SoildWorks software, and set up a trial run smoothly, can realize the three functions of the oil-water separation test machine. The airlaid webs of cattail fiber was prepared with hot melt bonded fiber mixed evenly and three-dimensional random distribution, to produce stable performance of dry heat treatment structure into three-dimensional mold, conical high porosity oil-water separation filter. The filter and the design of test performance For mechanical device combination to achieve effective filtering of the oil-water mixture. Using diesel oil, vegetable oil, repeated tests, to determine the three-dimensional element volume density, velocity, separation effect evaluation test parameters of device speed and centrifugal time.4. Purong filter by centrifugal oil-water ratio, oil recovery, oil absorption rate, absorption rate, residual oil rate, filtration efficiency to evaluate the three-dimensional oil separation effect of cattail filter, oil and water respectively by 7.5ml/min and 750ml/min into the three pipe mixed flow through the pores of nozzle spray into the cone, cylinder, cattail and 0.03g/cm~3 0.01g/cm~3,0.02g/cm~3 3D filter using 3 different density. The results showed that: in the same volume of 3D cattail filter density conditions vegetable oil, the breakthrough time is long and with the increase of diesel oil, the volume density of the filter, increasing two oil breakthrough time gap in vegetable oil 0.01g/cm~3 The breakthrough time for 40min than the diesel 10min on oil absorbency of vegetable oil absorption rate was higher than that of diesel fuel, vegetable oil at 0.01g/cm~3 up to 22.21g/g, and for 18.12g/g. diesel as the fiber volume density increased to two kinds of oil absorption rate decreased, water absorbency changed little, basically maintained at about 3 times its own weight in oil recovery, oil recovery plant in the volume density of 0.01g/cm~3,0.02g/cm~3 and 0.03g/cm~3 under the conditions of rates were 92.56%, 90.18% and 89.42%, diesel oil recovery rate were 90.51%, 86.90% and 83.71%, the two oil recovery rate is above 83%, the remaining oil is only equivalent to the absorption of oil and vegetable oil no more than 10%, the maximum is about 16%. diesel filter for cattail fiber plant oil can be at least 3 times, at least 4 cycles. The diesel filter and filter the three-dimensional 3D Purong kapok are excellent Natural oil absorption material, the cattail fiber first collected oil quantity is greater than the kapok, but with the number of cycles, the collection capacity of cattail fiber was lower than that of the influencing factors of.5. fiber and kapok oil properties of cattail fiber aggregation of oil-water separation, aggregation structure and density, mixture concentration and flow rate and other factors, will have an impact on the separation effect of cattail fiber aggregate water. Through the use of different materials and different concentration of oil, oil-water mixture flow velocity, optimizing design parameters, to achieve maximum absorption and separation efficiency, and achieve different fiber filter and multiple use.

【学位授予单位】:东华大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ342.86

【相似文献】

相关期刊论文 前10条

1 封严,肖长发;高吸油树脂的新进展及应用[J];上海环境科学;2004年02期

2 ;国外吸油材研制情况[J];交通环保;1980年01期

3 朱玉清,李克诚;复写原纸吸油量测定方法及技术指标的确定[J];中国造纸;1982年06期

4 陈建东;支文芳;徐学存;张继杰;胡志声;;关于泡沫在过滤吸油过程中使用寿命的研究[J];铁道劳动安全卫生与环保;1991年02期

5 赵雪芹,乔彤森,陈晓燕,管位农;高效吸油树脂性能研究[J];石化技术与应用;2000年06期

6 张高奇,周美华,梁伯润;高吸油树脂的研究与发展趋势[J];化工新型材料;2002年01期

7 徐萌;李彦锋;杨艳;彭巍;;高吸油树脂材料的研究进展[J];化工新型材料;2006年11期

8 江茂生;黄彪;蔡向阳;周洪辉;祁建民;;红麻杆高吸油材料吸油特性的研究[J];中国麻业科学;2007年06期

9 柳颖;徐明;张洪林;李长波;马慧贤;;高吸油树脂的研究及应用进展[J];化学与生物工程;2009年09期

10 官鹏;胡松启;;丙烯酸酯类接枝型高吸油树脂的性能研究[J];中国胶粘剂;2009年10期

相关会议论文 前5条

1 吴兆立;吴亿成;;吸油粉剂材料的研究及实践[A];2004年船舶防污染学术年会论文集[C];2004年

2 刘海东;徐建晖;王佳莉;段为;刘红文;杨鸣波;何琦;;共聚高吸油树脂合成及性能研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年

3 何特;王源升;邓钦沂;臧真娟;王思亮;;紫外辐照时间对吸油膨胀橡胶使用性能的影响[A];2012年全国高分子材料科学与工程研讨会学术论文集(下册)[C];2012年

4 王树雷;曹文杰;薛艳;刘婕;朱志谦;李辉;贺泽臣;;苯乙烯-丙烯酸丁酯-丙烯酸十二酯三元共聚高吸油树脂的合成及性能研究[A];2011年中国阻燃学术年会会议论文集[C];2011年

5 王思亮;王源升;邓钦沂;臧真娟;何特;;PMMA对聚丙烯酸丁酯高吸油树脂吸油性能的影响[A];2012年全国高分子材料科学与工程研讨会学术论文集(上册)[C];2012年

相关博士学位论文 前2条

1 柴文波;纤维基复合吸油材料的制备及其吸油机理研究[D];上海大学;2016年

2 曹胜彬;蒲绒纤维集合体油液吸附特性与油水分离性能研究[D];东华大学;2017年

相关硕士学位论文 前10条

1 吴卫逢;熔体静电纺丝超细纤维及溢油处理应用研究[D];北京化工大学;2015年

2 游香瑾;蒲绒非织造高蓬松絮片的制备与性能研究[D];东华大学;2016年

3 王绎涵;镁铝氧化物复合高吸油树脂的合成及性能研究[D];燕山大学;2016年

4 胡静璇;高吸油树脂的制备与性能研究[D];武汉工程大学;2016年

5 郭佳效;聚甲基丙烯酸酯类高吸油树脂的制备[D];天津大学;2012年

6 郑艳萍;高吸油树脂的合成及其性能的研究[D];西北师范大学;2012年

7 赵霞;填充型化学—物理复合交联高吸油树脂的合成与吸放油性能[D];浙江大学;2004年

8 卢娟;乳液型高吸油树脂的制备、性能及应用[D];浙江大学;2006年

9 肖侠;喷雾干燥法制备微/纳米结构高吸油树脂中空微球[D];湖南大学;2009年

10 徐萍英;含物理交联高吸油树脂的合成和表征[D];浙江大学;2003年



本文编号:1686392

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/1686392.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户eefc6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com