钛表面阳极氧化膜结构特性及耐蚀性研究
本文选题:工业纯钛 + 阳极氧化 ; 参考:《昆明理工大学》2017年博士论文
【摘要】:阳极氧化制备的Ti表面氧化膜具有出色的耐蚀性能、良好的生物相容性和优异的光催化性等优点,其制备过程简单、成本低、污染小,因此被广泛地应用于腐蚀防护、生物医学、新能源材料、光水解制氢等诸多领域。本论文以工业纯钛(TA2)为基体材料,对其阳极氧化过程开展研究。通过对TA2表面氧化膜形貌、结构、结晶行为和电化学特性的表征和计算,分析氧化膜结构特征和相构成,研究氧化膜的微观结构、成膜过程和结晶机理。为此,本论文在0.5 MH2SO4电解液中,系统研究阳极氧化电位,阳极氧化次数以及机械研磨对氧化膜结构和性能的影响。采用XPS深度溅射法,定量分析阳极氧化膜不同深度下Ti氧化物的结构、价态和含量;建立氧化膜中,各种氧化物以及氢氧化物的含量与氧化膜深度的关系;研究了氧化膜的结构特性、电化学特性和缺陷的扩散系数特性,构建氧化膜形成的点阵缺陷模型,研究形成机理和影响因素。结果表明,随着电位的提高,氧化膜厚度增大,结晶率提高,耐蚀性能增强。高电位促进氧化膜中Ti4+化合物的形成和锐钛矿形核。氧化膜由Ti02、Ti(OH)4、TiO2H2O、Ti203和TiO等组成,含量随深度呈连续变化。氧化膜的生成与O空位和Ti阳离子间隙物在氧化膜中的扩散有关。在Ti/氧化膜界面发生氧空位的生成,氧化膜/溶液界面发生氧空位的湮灭,Ti阳离子间隙物在氧化膜/溶液界面生成,Ti/氧化膜界面上湮灭,氧化膜同时向基体和溶液方向生长。在上述研究基础上,针对阳极氧化膜孔隙率较高的情况,对TA2进行二次阳极氧化处理。采用二次氧化阳极氧化处理,可以提高氧化膜的厚度,降低孔隙率。首次加压为30 V,终电位为40 V时,氧化膜厚度提高了约17.3%,表面微孔基本消失。首次加压处理形成了较为致密的初始氧化膜,在二次加压处理时,降低了析氧反应的密度,从而使二次氧化形成的氧化膜孔隙率明显降低。二次氧化处理有助于氧化膜向基体一侧生长,导致氧化膜厚度增加。同时,二次氧化处理增强了 TA2的耐蚀性,二次阳极氧化首次加压30 V,二次加压40 V处理后样品的自腐蚀电位和自腐蚀电流密度,比直接加压40 V样品的自腐蚀电位和自腐蚀电流密度分别提高了 0.16 VSCE,下降了约一个数量级,可以减少腐蚀倾向,降低腐蚀速率。由于表面形貌对氧化膜的形成过程有显著影响,对TA2进行机械研磨处理,细化表面晶粒、增加压应力、缺陷和表面电子能密度,提高表面活性。机械研磨处理可以明显增加氧化膜厚度,提高其耐蚀性。研究发现表面机械研磨处理可以改变氧化膜的形核方式,由于TA2表面能的提高降低了不同Ti化合物的形核功,形核过程由连续形核转变为瞬时形核,形核率显著提高;同时高的表面能为氧化膜的生长提供足够的能量,加速了空位和离子的扩散过程,导致O空位和Ti阳离子间隙物在氧化膜中的扩散速率,比未经过表面机械研磨处理样品提高了 2个数量级。最后形成的氧化膜和直接阳极氧化的氧化膜相比,自腐蚀电位提高了0.462 VSCE,自腐蚀电流密度下降约0.005 A.cm-2%。阳极氧化TA2氧化膜在NaCl溶液中,氧化膜孔洞内外易形成"氧浓差电池",使Cl-向孔洞处移动,孔洞内部形成了无氧、低pH和高Cl-浓度的腐蚀环境,造成孔内氧化膜的破裂,使Ti基体暴露在腐蚀介质中,平衡电位迅速下降,和孔外部构成"接触腐蚀电偶"。"腐蚀电偶"对腐蚀加速效果的影响和孔隙率有关,孔隙率较低时,腐蚀速率明显降低。二次阳极氧化处理可以明显改善表面结构,降低氧化膜孔隙率,减小孔洞对氧化膜耐蚀性的影响。当表面孔洞几乎消失时,氧化膜中的缺陷密度成为影响氧化膜耐蚀性的主要因素,NaCl溶液中的Cl-可以吸附在氧化膜中的点缺陷上,扰乱了 Mott-Schottkypair反应,在Ti基体/氧化膜界面上产生空隙,造成氧化膜和Ti基底分离,进而在内部压应力的作用下,导致了氧化膜破裂。机械研磨处理通过改变氧化膜形核模式和促进O空位和Ti阳离子间隙物的扩散等方式,明显降低了氧化膜的缺陷密度,有效抑制了 Cl-在氧化膜表面的吸附,最终提高了氧化膜的耐蚀性。
[Abstract]:The Ti surface oxide film prepared by anodic oxidation has excellent corrosion resistance, good biocompatibility and excellent photocatalytic activity. Its preparation process is simple, low cost and low pollution. Therefore, it is widely used in many fields such as corrosion protection, biomedicine, new energy materials, and light hydrolytic hydrogen production. This paper is based on industrial pure titanium (TA2). The anodic oxidation process of the matrix was studied. By characterizing and calculating the morphology, structure, crystallization behavior and electrochemical properties of the TA2 surface oxide film, the structure characteristics and phase composition of the oxide film were analyzed. The microstructure, the film forming process and the crystallization mechanism of the oxide film were studied. In this paper, the anode was systematically studied in the 0.5 MH2SO4 electrolyte. The effect of oxidation potential, anodic oxidation number and mechanical grinding on the structure and properties of the oxide film. The structure, valence and content of Ti oxide under different depths of anodic oxide film were quantitatively analyzed by XPS depth sputtering; the relationship between the content of various oxides and hydroxides in the oxide film and the depth of the oxide film was established; and the oxide film was studied. The structure characteristics, electrochemical properties and the diffusion coefficient characteristics of the defects are used to construct a lattice defect model formed by the oxide film and study the formation mechanism and influencing factors. The results show that the thickness of the oxide film increases with the increase of the potential, the crystallization rate increases, and the corrosion resistance is enhanced. The high potential promotes the formation of Ti4+ compounds in the oxide film and the anatase nucleation. The oxide film consists of Ti02, Ti (OH) 4, TiO2H2O, Ti203 and TiO. The content of the oxide film is continuously changed with the depth. The formation of the oxide film is related to the diffusion of the O vacancy and the Ti cation gap in the oxide film. The formation of oxygen vacancies in the Ti/ oxide film interface, the annihilation of oxygen vacancies in the oxide film / solution interface, and the Ti cation gap in the oxide film / solution. The interface is formed, the Ti/ oxide film is annihilated at the interface, and the oxide film grows to the direction of the matrix and the solution. On the basis of the above study, two anodized TA2 treatments are carried out for the anode oxidation film with high porosity. The thickness of the oxide film can be increased and the porosity can be reduced by the two oxidation anodizing treatment. It is first pressurized to 30 V, When the final potential is 40 V, the thickness of the oxide film increases about 17.3% and the surface micropores basically disappear. The initial pressure treatment forms a more compact initial oxide film, which reduces the density of the oxygen evolution reaction at the two times of pressure treatment, thus reducing the porosity of the oxide film formed by the two oxidation. The two oxidation treatment helps the oxide film to the matrix. The growth of the oxide film increases the thickness of the oxide film. At the same time, the corrosion resistance of TA2 is enhanced by the two oxidation treatment. The self corrosion potential and the self corrosion current density of the samples after the two anodization for the first time are 30 V and the two times pressurized 40 V. The self corrosion potential and the self corrosion current density of the samples with direct pressure 40 V are increased by 0.16 VSCE, respectively. The corrosion tendency and corrosion rate can be reduced by about one order of magnitude. The surface morphology has a significant influence on the formation process of the oxide film. The surface grain is refined, the surface grain is refined, the pressure stress, the defect and surface electron energy density are increased, and the surface activity is improved because the surface morphology has a significant influence on the formation of the oxide film. The thickness of the oxide film can be obviously increased by mechanical grinding. It is found that the surface mechanical grinding can change the nucleation of the oxide film. Because of the increase of the TA2 surface energy, the nucleation work of different Ti compounds is reduced. The nucleation process is transformed from the continuous nucleation to the instantaneous nucleation, and the nucleation rate is significantly increased. At the same time, the high surface can provide enough energy for the growth of the oxide film and accelerate the growth of the oxide film. The diffusion process of the vacancy and ion causes the diffusion rate of the O vacancy and the Ti cation gap in the oxide film, which is 2 orders of magnitude higher than that without the surface mechanical grinding. In the end, the corrosion potential of the oxide film is 0.462 VSCE higher than that of the oxide film directly anodized, and the corrosion current density decreases by about 0. 05 A.cm-2%. anodized TA2 oxide film in the NaCl solution, the oxygen concentration difference battery is easily formed inside and outside the pores of the oxide film, which causes the Cl- to move to the hole. The corrosion environment of oxygen free, low pH and high Cl- concentration is formed inside the hole, resulting in the rupture of the oxide film in the hole and exposing the Ti matrix to the corrosive medium, the equilibrium potential drops rapidly, and the pore structure is formed outside the hole. "Contact corrosion galvanic". "Corrosion galvanic" affects the effect of corrosion acceleration and porosity, and the corrosion rate decreases obviously when the porosity is low. The two anodized treatment can obviously improve the surface structure, reduce the porosity of the oxide film and reduce the effect of holes on the corrosion resistance of the oxide film. The defect density becomes the main factor affecting the corrosion resistance of the oxide film. The Cl- in the NaCl solution can adsorb on the point defects in the oxide film, disrupt the Mott-Schottkypair reaction, produce the gap in the interface of the Ti matrix / oxide film, and cause the separation of the oxide film and the Ti substrate, which leads to the rupture of the oxide film under the action of internal pressure. By changing the nucleation mode of the oxide film and promoting the diffusion of the O vacancy and the Ti cation gap, the grinding treatment obviously reduced the defect density of the oxide film, effectively inhibited the adsorption of Cl- on the surface of the oxide film, and finally improved the corrosion resistance of the oxide film.
【学位授予单位】:昆明理工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TG174.451
【相似文献】
中国期刊全文数据库 前10条
1 曹楚南;官素珍;;铝的阳极氧化膜的孔率与密度的研究[J];材料保护;1965年06期
2 肖珩,樊自栓,徐源,张文奇;铝的冷封闭硫酸阳极氧化膜组成[J];北京科技大学学报;1991年05期
3 纪红;李永丰;樊志罡;朱祖芳;;变形法评定阳极氧化膜抗破裂性标准解析[J];理化检验(物理分册);2014年01期
4 刘磊,胡文彬,吴建生;铝合金阳极氧化膜的微观结构分析[J];上海交通大学学报;2001年02期
5 刘磊,胡文彬,吴建生;铝合金阳极氧化膜的微观结构分析[J];上海交通大学学报;2001年02期
6 胥泽奇,殷明;枪用铝合金阳极氧化膜耐晒性试验研究[J];表面技术;2003年06期
7 郏宇飞;旷亚非;周海晖;胡乐晖;;铝高压阳极氧化膜微观形貌影响因素的研究[J];电镀与精饰;2006年02期
8 赵景茂;王珊珊;郭超;赵旭辉;左禹;;铝合金阳极氧化膜双向脉冲封闭工艺[J];北京化工大学学报(自然科学版);2008年01期
9 朱祖芳;;铝合金建筑型材阳极氧化膜的性能分析及质量评价[J];电镀与涂饰;2008年04期
10 周峗;宣天鹏;汪亮;张万利;;铝合金阳极氧化膜的封闭方法[J];电镀与精饰;2011年04期
中国重要会议论文全文数据库 前10条
1 倪似愚;;铝表面功能性阳极氧化膜的应用及展望[A];2002年全国电子电镀年会论文集[C];2002年
2 刘洲;刘德林;何玉怀;刘昌奎;;以贮存件探讨阳极氧化膜耐蚀寿命评估方法[A];面向航空试验测试技术——2013年航空试验测试技术峰会暨学术交流会论文集[C];2013年
3 徐洮;赵家政;陈建敏;;铝多孔质阳极氧化膜扩孔行为的电镜研究[A];第八次全国电子显微学会议论文摘要集(Ⅱ)[C];1994年
4 钱建才;许斌;邹洪庆;吕基成;吴厚昌;方敏;;聚苯胺掺杂铝铜合金阳极氧化膜性能研究[A];第九届全国转化膜及表面精饰学术年会论文集[C];2012年
5 王晓波;阎逢元;张爱民;冯治中;陈建敏;;自润滑铝硅合金阳极氧化膜的摩擦学特性研究[A];第七届全国摩擦学大会论文集(二)[C];2002年
6 杨潇薇;王桂香;董国君;龚凡;;植酸对镁锂合金阳极氧化膜的影响[A];2009年全国电子电镀及表面处理学术交流会论文集[C];2009年
7 贺春林;国玉军;刘常升;李凤琴;才庆魁;;颗粒增强铝基复合材料阳极氧化膜的耐蚀性[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
8 杨潇薇;王桂香;董国君;龚凡;;硅溶胶对镁锂合金阳极氧化膜的影响[A];2009年全国电子电镀及表面处理学术交流会论文集[C];2009年
9 戴丹;王慧;李建忠;乌学东;;环保型镁合金阳极氧化膜的耐腐蚀性能研究[A];2008年全国腐蚀电化学及测试方法学术交流会论文摘要集[C];2008年
10 曹发和;施彦彦;张丽君;张昭;张鉴清;;环保快速镁合金阳极氧化膜的制备与耐蚀性能研究[A];2006年全国腐蚀电化学及测试方法学术会议论文集[C];2006年
中国重要报纸全文数据库 前1条
1 朱祖芳;铝型材氧化膜性能分析及质量评价[N];中国有色金属报;2007年
中国博士学位论文全文数据库 前8条
1 沟引宁;镁合金表面Al_2O_3纳米粒子增强阳极氧化膜成膜机制及性能研究[D];重庆大学;2015年
2 付天琳;钛表面阳极氧化膜结构特性及耐蚀性研究[D];昆明理工大学;2017年
3 叶皓;双羟基金属氧化物前驱体法引入合金元素制备铝复合阳极氧化膜及其性能研究[D];北京化工大学;2006年
4 刘伟华;热循环作用下铝合金阳极氧化膜的开裂行为与机理研究[D];北京化工大学;2008年
5 张金生;铝合金阳极氧化膜表面状态与粘接性能研究[D];北京化工大学;2007年
6 田连朋;几种外加离子对铝阳极氧化膜电化学性质的影响[D];北京化工大学;2006年
7 刘章生;氮化铝颗粒增强铝基复合材料的腐蚀行为研究[D];上海交通大学;2006年
8 任建军;铝阳极氧化膜的制备及自组织行为研究[D];北京化工大学;2012年
中国硕士学位论文全文数据库 前10条
1 陈小丽;铝锂合金酒石酸—硫酸阳极氧化膜的腐蚀行为及机理研究[D];重庆理工大学;2016年
2 宁淑红;掺杂铈盐的溶胶与磷酸盐复合处理对铝合金阳极氧化膜耐蚀性的影响[D];西南交通大学;2017年
3 孟祥凤;铝合金阳极氧化膜的制备及其性能研究[D];中国计量学院;2014年
4 王利敏;镁合金的腐蚀及其阳极氧化膜耐蚀性研究[D];南京航空航天大学;2006年
5 杜志惠;医用钛合金表面阳极氧化膜的制备工艺及性能研究[D];天津大学;2004年
6 崔立波;镁合金阳极氧化膜性能的电化学研究[D];重庆大学;2011年
7 陈爽;提高铝合金阳极氧化膜在高温下的抗开裂性能研究[D];北京化工大学;2009年
8 王珊珊;铝合金阳极氧化膜的脉冲封闭工艺与耐蚀性研究[D];北京化工大学;2007年
9 陈胜利;铝合金阳极氧化膜的外加电压封闭工艺及耐蚀性研究[D];北京化工大学;2008年
10 刘鹏;阳极氧化膜的击穿机制和纳米孔道形成机理的研究[D];南京理工大学;2012年
,本文编号:1779638
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/1779638.html