当前位置:主页 > 硕博论文 > 工程博士论文 >

动力稳定车新型稳定装置动力学及失效研究

发布时间:2018-05-21 01:20

  本文选题:动力稳定车 + 动力学分析 ; 参考:《昆明理工大学》2017年博士论文


【摘要】:本文是结合中国铁建高新装备股份有限公司的新产品研发项目"动力稳定车新型稳定装置的研发"进行的,针对项目研发过程中遇到的关键问题,本文从新型稳定装置的作业效果研究和关键部件的失效问题研究两个方面着手。首先对既有动力稳定车的稳定装置作业时的横向激振进行分析研究,将现场实验分析和虚拟仿真结果提供的轨枕系统响应作为开发的参考依据,并在此基础上运用虚拟样机技术,结合刚柔耦合多体动力学,研究新型稳定装置作业响应,评价其作业效果;同时,借助动力学仿真输出的悬挂板弹簧作业期间的载荷谱,对物理样机实验中发生失效的悬挂板弹簧进行系统分析。为新型稳定车稳定装置的开发设计提供数据参考和技术支持。应用车辆轨道动力学理论,建立了动力稳定车整车在走行和作业情况下的数学模型。根据其建立仿真模型,并借助刚柔耦合动力学理论,进行了一系列不同工况下的作业仿真,得到了稳定车的稳定装置、轨道以及轨枕的横向加速度响应曲线,以及不同工况下稳定装置对轨道的轮轨激振力曲线和道碴激振力曲线,讨论了激振频率和垂向静压力这两个主要作业参数对输出的影响。同时进行现场作业试验对比,获得了动力稳定车的实际作业响应,验证仿真结果的有效性,确立了新型稳定装置研发的参考数据,并通过实验中轨道系统的横向加速度响应对比了相关货车动力学研究结果,从时域和频域两个方面证明了动力稳定车作业的有效性。研究介绍了一种新型稳定装置,基于多体动力学理论,对新型稳定装置的各个构件进行运动分析,结合拉格朗日方法建立该稳定装置横向激振的微分方程组并采用新型预测-校正积分法求解,同时采用多刚体仿真模型验证结果,初步分析新型稳定装置的作业响应,验证该结构的可行性。随后建立了新型稳定装置的刚柔耦合虚拟样机模型,参考实际情况,采用了两组常用参数以及一组极限工况参数进行作业仿真,分析新型稳定装置较既有结构的优势。针对新型稳定结构关键部件的失效分析,提出了一种基于裂纹嘴开口位移(Crack Mouth Opening Displacement,简称CMOD)估算J积分的工程预估方法。该方法在工程实际应用中,利用裂纹构件因子β与构件受力无关的特性,通过测量裂纹件的CMOD以来估算J积分以及应力强度因子等断裂韧性参数。文中以三点弯曲试件为例,将仿真和实验两个方面取得的J积分对比,验证了 CMOD与J积分的关系,并通过另一种加载模式的试件介绍了该方法的使用。这种预估方法在断裂研究分析的初期用来预估、评价某断裂问题将会非常便捷。在前述研究基础上,对新型稳定装置样机实验中失效的悬挂板弹簧进行了研究,从零件的材料性能,几何特征,断裂力学特征等几个方面进行了较为详细的分析。借助扩展有限元方法对悬挂板弹簧进行了稳定装置作业工况下的受力分析,获得了裂纹的萌生与扩展随时间的变化曲线。随后根据裂纹长度将断裂扩展的过程分为三个阶段进行分析,研究了不同裂纹长度时应力强度因子随着加载的变化,并利用CMOD方法估测了不同裂纹长度时加载裂纹尖端的应力强度因子,然后与不同复合型裂纹准则的结果进行了对比,并在最后对失效构件进行了总结提出了修改建议。
[Abstract]:This paper is based on the research and development of new product R & D project of China's China Iron and technology high-tech equipment (Limited by Share Ltd) new product research and development project. In view of the key problems encountered in the project R & D process, this paper begins with two aspects of the research on the operation effect of the new stable device and the failure of the key components. The transverse excitation of the stable device is analyzed and studied. The response of the sleeper system provided by the field experiment analysis and the virtual simulation results is taken as the reference basis. On this basis, the virtual prototyping technology is used and the rigid flexible coupling multi-body dynamics is used to study the operation response of the new stable device and evaluate its work. At the same time, with the aid of the load spectrum of the suspension plate spring during the dynamic simulation, the suspension plate spring of the physical prototype is systematically analyzed. The data reference and technical support are provided for the development and design of the new stable vehicle stability device. The dynamic stability vehicle is established by using the theory of vehicle track dynamics. A mathematical model of the whole vehicle under the condition of walking and operation. Based on the simulation model, and using the rigid flexible coupling dynamics theory, a series of work simulation under different working conditions has been carried out. The stability device of the stable vehicle, the track and the lateral acceleration response curve of the sleeper, and the wheel and rail of the stable device to the track under different working conditions are obtained. The exciting force curve and the ballast excitation force curve are discussed, and the effects of the two main operating parameters of the exciting frequency and vertical static pressure on the output are discussed. At the same time, the actual operation response of the dynamic stable vehicle is obtained, the effectiveness of the simulation results is verified, and the reference data of the new stable device are established and passed. In the experiment, the lateral acceleration response of the track system is compared with the results of the study on the dynamics of the truck. The effectiveness of the dynamic stable vehicle is proved from two aspects of the time domain and the frequency domain. A new stable device is introduced. Based on the theory of multi-body dynamics, the motion analysis of the new stable installed components is carried out with lagorang. The diurnal method establishes the differential equations of the lateral vibration of the stable device and uses a new prediction correction integral method. At the same time, the results are verified by the multi rigid body simulation model. The operation response of the new stable device is analyzed and the feasibility of the structure is verified. Then the rigid flexible coupling virtual prototype model of the new stabilization device is established, and the reference is established. In practice, two groups of common parameters and a group of limit working parameters are used to simulate the operation of the new stable device. In view of the failure analysis of the key components of the new stable structure, a project based on the crack mouth opening displacement (Crack Mouth Opening Displacement, abbreviated as CMOD) is proposed to estimate the J integral. In the practical application of the method, the method is used to estimate the fracture toughness parameters such as J integral and stress intensity factor by measuring the CMOD of the crack member and the stress intensity factor, by using the characteristic of the factor beta of the crack member and the force of the component. The three point bending specimen is taken as an example to compare the J integral of the simulation and experimental two aspects and verify the CMOD The relationship between the J integral and the test part of another loading mode is introduced. This method is used to predict the fracture problem at the beginning of the fracture analysis, and it will be very convenient to evaluate a fracture problem. On the basis of the previous research, the suspension plate springs which are invalid in the prototype experiment of the new stable device are studied, from the parts. The material properties, geometric features and fracture mechanics characteristics are analyzed in detail. The extended finite element method is used to analyze the stress of the suspension plate spring under the working condition of the stabilizing device. The curve of the crack initiation and propagation with the time is obtained. Then the fracture expansion process is divided according to the crack length. For the three stages, the stress intensity factors of different crack lengths with the loading are studied, and the stress intensity factor of the crack tip at different crack lengths is estimated by the CMOD method, and then the results are compared with the results of the different composite crack criteria. Finally, the failure components are summarized and put forward. Revise the suggestion.
【学位授予单位】:昆明理工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:U216.6

【相似文献】

相关期刊论文 前10条

1 马占川;;动力稳定车稳定头垂直下压力控制系统技术改造的探讨[J];铁道建筑;2008年08期

2 龚军;陈平松;;网络控制技术在动力稳定车上的应用[J];机车电传动;2010年06期

3 李伟成;晏彤;高正卿;何桂源;;动力稳定车动力头对车架的动力分析[J];轻工科技;2013年06期

4 刘家骐;;动力稳定车电子控制线路板技术鉴定会在锦州召开[J];铁道科技动态;1989年07期

5 苏保生;动力稳定车稳定装置的国产化研究[J];铁道建筑;1997年02期

6 宋慧京;轨道的动力稳定是现代化养路中一个重要的经济因素[J];铁道建筑;1992年02期

7 姜成勇;薛占军;;WD320型动力稳定车电气控制系统改进分析[J];科技风;2013年18期

8 程立;提高WD320型动力稳定车横向平稳性性能方法的探讨[J];铁道机车车辆;1997年02期

9 张红梅;WD320动力稳定车作业挂挡方式的缺陷分析与改造[J];铁道建筑;2003年06期

10 李胜;WD320型动力稳定车新型走行齿轮的研制[J];铁道机车车辆工人;2003年11期

相关会议论文 前2条

1 邓强国;胡斌;黄亚宇;;动力稳定车中心销总成系统高速走行动力学分析[A];战略性新兴产业的培育和发展——首届云南省科协学术年会论文集[C];2011年

2 邓强国;胡斌;黄亚宇;;动力稳定车中心销总成系统高速走行动力学分析[A];2011装备制造业绿色创造 节能减排发展论坛论文集[C];2011年

相关博士学位论文 前2条

1 韩世昌;动力稳定车新型稳定装置动力学及失效研究[D];昆明理工大学;2017年

2 严波;动力稳定车作业过程的动力学特性研究[D];昆明理工大学;2017年

相关硕士学位论文 前5条

1 王军;动力稳定车稳定装置参数优化及刚柔耦合分析[D];昆明理工大学;2016年

2 谢耿昌;轨道动力稳定车主车架结构疲劳强度研究[D];西南交通大学;2014年

3 邓强国;动力稳定车转向架中心销接触动力学研究[D];昆明理工大学;2010年

4 刘光伟;基于典型工况下某动力稳定车转向架动力学特性研究[D];昆明理工大学;2011年

5 刘永建;WD320型动力稳定车电气控制系统改进的研究[D];山东大学;2007年



本文编号:1917095

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/1917095.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户bcc7b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com