智能井井下数据采集与处理分析技术研究
本文选题:智能井 + 数据采集 ; 参考:《西南石油大学》2017年博士论文
【摘要】:随着油气勘探开发范围不断扩大,油藏开采环境日趋复杂,水平井、大位移井、多分支井等特殊结构井的应用日益广泛,用以提高开采效率和产量。如何优化这些特殊结构井的完井方式和生产管理过程已经成为我国油气生产中急需解决的问题。然而传统的完井方式和生产管理模式已经不能满足特殊结构井在生产管理与优化方面的需要。近些年来出现的智能井系统及相关技术的研究与发展为这一问题提供了解决思路,逐渐改变了油气井的生产管理模式。目前,国外多家油公司已相继研制出各自的智能井系统并投入油田使用,而国内尚无自主研制的智能井系统。本文正是在这一背景下,在课题组前期研究的基础上,从智能井井下数据采集、数据处理和工程应用三方面展开深入的理论与技术研究,并在理论研究的基础上开发了智能井井下数据采集与处理分析软件平台。主要研究内容如下:1.以三层段水平井为目标,完成智能井井下数据采集系统的总体设计,并提出两套详细设计方案。一套是完全引进方案,采用斯伦贝谢或哈里伯顿两家公司的设备,根据完井结构的具体情况,对系统设备和关键测量组件进行配套选型;另一套是自主研制方案,自主完成井口 PDG模块单元、井口装置、信号传输通道、PDG测量装置和安装托筒等关键部件的详细设计。2.针对目前智能井井下压力监测数据处理方法的不足,提出了一套完整、高效、精准的数据处理方法,即提出采用基于Hampel估计的中值数绝对偏差决策滤波法对PDG压力数据进行异常值消除;采用小波分析进行数据降噪,利用正交试验原则优选小波阈值降噪的条件组合,解决了小波阈值降噪参数选择的盲目性;运用压力导数法进行压力的不稳定状态识别;根据识别出的不同压力变化阶段,以压力阈值为主、时间阈值为辅的策略进行数据精简,在有效保留断点的同时提高了压缩比。3.以流体力学为理论基础,以智能井模拟系统实验平台为实验基础,研究层段控制阀流入动态模型,分析流体通过阀孔附近的流动形态,建立经层段控制阀控制后的流量与阀孔内外压差的关系式;通过引入综合流量系数与ICV开度的关系,提出利用ICV开度和PDG压力进行分层流量计算的方法。4.以油藏在短时间范围内是一个线性系统为假设前提,运用不稳定试井解释理论和产量叠加原理,提出在未知油藏模型和其它参数的情况下,利用PDG压力监测数据和累计产量进行流量历史重建的新方法。5.在未知储层其它参数的情况下,以支持向量机回归理论和方法为基础,运用移动窗口技术实时更新训练集样本数据,根据最新的PDG数据进行动态建模,实现流量和压力数据的滚动预测。6.以流体力学数值模拟实验为基础,研究水平井不同位置见水后各层段环空与油管的压力变化规律,提出利用PDG压力监测数据进行水平井水侵时间和位置监测的新方法。7.在上述基本理论和实现方法研究的基础上,提出了智能井井下数据采集与处理分析系统的总体结构框架和主要功能设计。并利用Microsoft Visual Studio.NET 2003实现了以PDG数据为核心,以井站、基地和企业三级应用模式,按数据采集、数据处理和工程应用为主线的智能井井下数据管理应用软件平台。总之,本文以智能井井下数据为中心,着重研究了井下数据采集、处理与分析的基本理论和实现方法,针对PDG数据采集、数据处理、分层流量计算与历史重建、产量和压力预测等关键问题进行了深入探讨,构建并开发了智能井井下数据采集与处理分析软件平台。为解决智能井井下数据实时监测、管理、处理与分析等智能井关键技术问题提出了技术上可实现的有效方法,这对于推进国内智能井技术的研究与发展,提高油气生产数据管理的科学性,制定生产决策的准确性,降低生产成本,真正实现智能油井乃至智能油田具有重要的理论意义和应用价值。
[Abstract]:With the expansion of the oil and gas exploration and development range and the increasingly complex mining environment, the application of special structural wells, such as horizontal well, large displacement well and multi branch well, is increasingly widely used to improve the production efficiency and production. How to optimize the completion mode and production management process of these special structural wells has become an urgent need to be solved in oil and gas production in China. However, the traditional well completion mode and production management model have not met the needs of the production management and optimization of the special well. The research and development of the intelligent well system and related technology in recent years has provided a solution for this problem, and gradually changed the production management mode of the oil and gas wells. Home oil company has developed its own intelligent well system and put into the oil field, but there is no self-developed intelligent well system at home. This paper is on the basis of this background, on the basis of the previous research of the project group, from three aspects of data acquisition, data processing and engineering should be carried out in-depth theoretical and technical research. The software platform for data acquisition and processing of intelligent wells is developed on the basis of theoretical research. The main contents are as follows: 1. the overall design of the underground data acquisition system for intelligent wells is completed with three layers of horizontal wells as the target, and two sets of detailed design schemes are put forward. The equipment of the two companies, according to the concrete condition of completion structure, carries out matching selection of the system equipment and key measurement components; the other is the independent development scheme, the detailed design of the key components, such as the well head PDG module unit, the wellhead device, the signal transmission channel, the PDG measuring device and the installation support tube, is designed for the current intelligent well underground. A complete, efficient and accurate data processing method is proposed, which is to eliminate the abnormal value of the PDG pressure data by using the median absolute deviation decision filtering method based on Hampel estimation, using the wavelet analysis to reduce the noise and optimize the wavelet threshold de-noising by using the orthogonal test principle. The condition combination solves the blindness of the selection of the wavelet threshold noise reduction parameters, and uses the pressure derivative method to identify the unstable state of the pressure. According to the different stages of pressure change identified, the data is reduced by the strategy of pressure threshold and time threshold supplemented, and the compression ratio.3. is improved to flow strength while retaining the breakpoint effectively. On the basis of theory, based on the experimental platform of intelligent well simulation system, this paper studies the flow of control valves into the dynamic model, analyzes the flow pattern of fluid through the valve hole, and establishes the relationship between the flow of the control valve and the pressure difference inside and outside the valve hole, and puts forward the use of IC by introducing the relationship between the comprehensive flow coefficient and the ICV opening. The method of calculating the stratified flow of V opening and PDG pressure.4. is a hypothesis precondition for a linear system in a short time range. Using the theory of unstable well test interpretation and the principle of output superposition, the historical reconstruction of the flow of flow with PDG pressure monitoring data and accumulative output is proposed in the case of the unknown reservoir model and other parameters. On the basis of support vector machine regression theory and method, the new method.5. is based on support vector machine regression theory and method, using mobile window technology to update training set sample data in real time, dynamically modeling according to the latest PDG data, and realizing the rolling prediction.6. of flow and pressure data based on the hydrodynamic numerical simulation experiment. A new method of using PDG pressure monitoring data to carry out water invasion time and location monitoring of horizontal wells is proposed by using PDG pressure monitoring data. Based on the study of the basic theory and implementation methods, the overall structural framework of the underground data acquisition and processing analysis system for intelligent wells is proposed. And the main function design. And using Microsoft Visual Studio.NET 2003, the application software platform of intelligent well downhole data management, which takes PDG data as the core, well station, base and enterprise three level application mode, according to data collection, data processing and engineering application, is realized. In a word, this paper focuses on the underground data of intelligent well and focuses on the research. The basic theory and realization method of downhole data collection, processing and analysis are discussed. The key problems such as PDG data collection, data processing, stratified flow calculation and historical reconstruction, production and pressure prediction are deeply discussed, and a software platform for underground data acquisition and processing analysis of intelligent wells is constructed and developed to solve underground data of intelligent wells. The key technical problems of intelligent wells, such as real-time monitoring, management, processing and analysis, are put forward in this paper. This is an effective method to realize the key technical problems of intelligent wells, which can promote the research and development of the domestic intelligent well technology, improve the scientific nature of the data management of oil and gas production, make the accuracy of the production decision, reduce the production cost, and truly realize the intelligent oil well and even the intelligent oil field. It has important theoretical significance and application value.
【学位授予单位】:西南石油大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TE937
【参考文献】
相关期刊论文 前10条
1 刘均荣;姚军;于伟强;;长时井下压力监测数据流动过程识别方法研究[J];西南石油大学学报(自然科学版);2014年02期
2 乐平;陈小凡;付玉;刘峰;;水平井井筒变质量流动压降计算新模型[J];石油学报;2014年01期
3 胡慧芳;;油藏数值模拟历史拟合质量评价方法[J];断块油气田;2012年03期
4 余金陵;魏新芳;;胜利油田智能完井技术研究新进展[J];石油钻探技术;2011年02期
5 阮臣良;朱和明;冯丽莹;;国外智能完井技术介绍[J];石油机械;2011年03期
6 许胜;陈贻累;杨元坤;南金虎;;智能井井下仪器研究现状及应用前景[J];石油仪器;2011年01期
7 冉林;段永刚;胡方;何吉祥;黄利平;;永置式监测技术的研究与应用[J];钻采工艺;2010年05期
8 曲从锋;王兆会;袁进平;;智能完井的发展现状和趋势[J];国外油田工程;2010年07期
9 张建军;贾永禄;张烈辉;;长时压力监测数据处理新方法与应用研究[J];西南石油大学学报(自然科学版);2010年02期
10 王兆会;曲从锋;袁进平;;智能完井系统的关键技术分析[J];石油钻采工艺;2009年05期
相关博士学位论文 前3条
1 李翔;基于小波分析的测量信号处理技术研究[D];哈尔滨工业大学;2009年
2 李海生;支持向量机回归算法与应用研究[D];华南理工大学;2005年
3 衡彤;小波分析及其应用研究[D];四川大学;2003年
相关硕士学位论文 前5条
1 王蕾;试井数据预处理与模型诊断技术研究[D];西安石油大学;2013年
2 丁宏飞;基于智能优化算法的支持向量机回归及其应用[D];西南交通大学;2011年
3 黄巧英;基于时变系统的支持向量机预测模型及其应用[D];西南石油大学;2011年
4 曾兰;支持向量机在油藏历史拟合中的应用研究[D];西安石油大学;2010年
5 刘运荣;基于支持向量机的时间序列预测研究[D];哈尔滨工程大学;2008年
,本文编号:1937429
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/1937429.html