古建筑和出土饱水木材鉴别与细胞壁结构变化
本文选题:古建筑木构件 + 饱水木质文物 ; 参考:《中国林业科学研究院》2017年博士论文
【摘要】:开展古建筑和出土饱水木材的测年、树种识别及其细胞壁结构变化机理的研究,将为揭示木材背后的文化及社会背景提供科学依据,同时也将为古建筑和出土饱水木材的加固与保存技术的发展提供重要科学基础。本论文分别以山西12座古代木结构建筑中41份木构件的木材样品作为地上木质遗存的代表,并以浙江良渚遗址群3个代表性遗址出土的79份饱水木质文物的木材样品作为地下木质遗存的代表,通过放射性同位素分析与木材树种识别技术,阐明山西古代木结构建筑和浙江良渚遗址群木质器物的基本用材原则,并通过木材细胞壁微观构造与化学结构研究,揭示不同保存环境、部位和树种等因素对古代木建筑木构件和饱水木质文物的木材细胞壁结构变化的影响规律。主要研究结论归纳如下:(一)古建筑和出土饱水木材的树种识别及生态经济背景(1)在12所唐至民国时期的山西古代木结构建筑中,14C测年数据对史料记载的年代进行了佐证和补充。并根据识别出的11个属的木材,证明“就近取材”是其重要用材原则,从而导致不同区域的用材存在一定差异。且山西古代的先民已能够充分掌握木材的加工等性质,并能对当地常见树种进行合理利用,出现了木构件的二次利用。(2)在新石器时期良渚遗址群出土的饱水木质文物中,共识别出17个属的木材,“就地取材”依旧是其主要用材原则,但受采集狩猎活动限制,取材范围较小。通过不同的构件及器物类型所用的树种可知,三个遗址的用材受木材加工性能和木材材性的影响较小。且不同遗址的用材可能受到遗址地位和功能的影响,存在明显差异。(二)古建筑和出土饱水木材的细胞壁结构变化(1)古建筑腐朽木材中,其细胞壁结构及化学成分相比于现代木材存在明显差异。表现为任一边材部位,半纤维素首先遭到降解,从而对纤维素的稳定性产生影响,碳水化合物的浓度降低,木质素相对含量明显增加。晚材次生壁S2层成为微生物降解的主要区域。(2)出土饱水木材中,次生壁出现典型的海绵状结构或空洞。且葡聚糖侧链的乙酰基消失,纤维素结晶区遭到破坏,多糖类物质遭到了严重的降解,木质素结构未发生明显改变,但相对含量明显增加。受化学成分变化的影响,木材中的碳(C)、氧(O)等主要元素,及铁(Fe)、硅(Si)等微量元素的相对含量略有差异。(3)古建筑腐朽木柱的不同高度,其细胞壁结构及化学成分差异明显,越靠近柱基,其降解程度越深。(4)出土饱水木材的降解程度,受埋藏环境影响明显,其降解程度为:美人地遗址卞家山遗址莫角山遗址。但因为莫角山遗和美人地遗址均属良渚晚期,而卞家山处于良渚中期偏晚到良渚晚期偏早阶段,因此说明出土饱水木材的降解程度与埋藏年代不呈正相关。(5)垂直插入土壤的出土饱水木材降解程度,受取样位置的影响明显。同一木构件的底端保存状态略优于顶端,心材的保存状态略优于边材。(6)出土饱水木材的降解程度,还明显受到针叶树材与阔叶树材的差异影响。相比于马尾松(Pinus massoniana),锥木(Castanopsis)出土饱水木材的细胞壁结构、化学成分及元素相对含量变化程度,受遗址差异的影响更大。
[Abstract]:The study of tree recognition and the mechanism of cell wall structure change will provide scientific basis for revealing the cultural and social background behind the wood, and also provide an important scientific basis for the development of the reinforcement and preservation technology for ancient and unearthed wood. This paper is in Shanxi 12, respectively. The wood samples of 41 wood components in the ancient wooden structure are represented as the remains of the wood, and the wood samples of 79 full water woody relics unearthed from the 3 representative sites of the Liangzhu site group in Zhejiang are represented as the remains of the woodiness, and the ancient wood knot in Shanxi is clarified by radioisotope analysis and wood tree identification technology. The basic timber principles of construction and Zhejiang Liangzhu site group were studied. Through the study of the microscopic structure and chemical structure of wood cell wall, the influence of different preservation environment, location and tree species on the changes of wood cell wall structure in ancient wood building and full water wooden relics were revealed. The main conclusions are as follows: (1) the identification of tree species and the ecological and economic background of the ancient buildings and unearthed saturated wood (1) in the ancient wooden structures of Shanxi in the period of the 12 Tang to the Republic of China, the data of the dating of the historical data were testified and supplemented by the 14C dating data. According to the identified timber of 11 genera, it was proved that the "near material" was the principle of its important timber. There are certain differences in the materials used in different regions. And the ancient Shanxi ancestors have been able to fully grasp the properties of wood processing, and can make rational use of the common local tree species, and the two use of wooden pieces appeared. (2) in the satiety wooden relics unearthed from the Liangzhu site group in the Neolithic period, 17 genera of wood were identified, "take the place on the ground" Wood is still the main principle of material use, but limited by hunting and hunting activities. The wood materials used in different components and utensils can be seen that the wood properties of the three sites are less affected by the wood processing and wood properties. Differences. (two) changes in cell wall structure of ancient buildings and unearthed saturated wood (1) the cell wall structure and chemical composition of the ancient buildings were significantly different from those of modern wood. It showed that the hemicellulose was degraded first, and the stability of fibrin was affected and the concentration of carbohydrates decreased. The relative content of lignin increased obviously. The secondary wall S2 layer of late wood became the main area of microbial degradation. (2) the secondary wall appeared to be a typical cavernous structure or cavity in the unearthed saturated wood. The acetyl group of the side chain of glucan disappeared, the cellulose crystal area was destroyed, the polysaccharides were seriously degraded and the lignin structure did not occur. The relative content of carbon (C), oxygen (O) and other major elements in wood, and iron (Fe), silicon (Si) and other trace elements in wood were slightly different. (3) the cell wall structure and chemical composition of the ancient buildings were different, the closer to the column, the deeper the degradation degree. 4) the degradation degree of the unearthed water saturated wood is affected by the buried environment, and its degradation degree is: Mt. Mojiao monsite site, Bian Jiashan site, Mei Di site. But the remains of Mt. Mojiao and the ruins of beauty land belong to the late Liangzhu, while Bian Jiashan is in the late Liangzhu late Liangzhu early stage of Liangzhu, which indicates the degree of degradation of the unearthed wood. There was no positive correlation between the burial age. (5) the degradation degree of the unearthed saturated wood with vertical insertion of soil was significantly affected by the sampling position. The preservation state at the bottom end of the same wooden piece was slightly superior to the top, and the preservation state of the heartwood was slightly better than that of the sapwood. (6) the degradation degree of the unearthed satiety wood was obviously influenced by the difference between coniferous wood and broadleaf wood. Compared to Pinus massoniana (Pinus massoniana), the cell wall structure of the taper wood (Castanopsis) unearthed full water wood, the change degree of the chemical composition and the relative content of the elements was greatly influenced by the difference of the site.
【学位授予单位】:中国林业科学研究院
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S781.1
【相似文献】
相关期刊论文 前10条
1 王思群;;木材酸性测定与应用[J];林业科技开发;1989年03期
2 焉树娟;;几种常见木材变色的防治[J];科技与企业;2013年24期
3 郭洪武;李春生;王金林;;木材光变色及其防止的研究进展[J];林产工业;2006年05期
4 郭明辉;关鑫;;木材诱发变色研究现状与趋势[J];世界林业研究;2008年05期
5 邵灵敏;郭洪武;李黎;刘亚兰;;木材和染色木材光变色的研究进展[J];材料导报;2011年03期
6 康芦笙;胡中源;肖劲;;一种水性多功能木材保护剂[J];上海涂料;2011年09期
7 王军;姜树海;阮淑华;;木材的颜色与变色[J];吉林林业科技;1992年01期
8 方文彬;木材应用问答300例[J];北京木材工业;1997年03期
9 李玉栋;木材的变色及其预防和控制[J];人造板通讯;2002年03期
10 韩英磊;李艳云;周宇;;木材光降解机理及研究进展[J];世界林业研究;2011年04期
相关会议论文 前4条
1 张金萍;;考古木材的变色与脱色研究[A];中国文物保护技术协会第三次学术年会论文集[C];2004年
2 赵荣军;费本华;江泽慧;;人工林桉树木材颜色和耐光性[A];2005年中国科协学术年会26分会场论文集(2)[C];2005年
3 夏璐;;考古饱水木质文物基本特性的界定[A];中国文物保护技术协会第四次学术年会论文集[C];2005年
4 赵桂芳;嵇益民;马菁毓;杨淼;;探究用聚乙二醇处理饱水古代湿木色泽变化的原因[A];中国文物保护技术协会第三次学术年会论文集[C];2004年
相关博士学位论文 前10条
1 董梦妤;古建筑和出土饱水木材鉴别与细胞壁结构变化[D];中国林业科学研究院;2017年
2 刘志佳;温致变色木材的制备和机理研究[D];中国林业科学研究院;2010年
3 王志娟;木材变色菌的生物学特性及其防治[D];中国林业科学研究院;2005年
4 谢满华;化学处理木材的应力松弛[D];北京林业大学;2006年
5 徐凯宏;压阻式木材内部缺陷类无损检测理论与技术的研究[D];东北林业大学;2004年
6 常德龙;人工林木材变色与防治技术研究[D];东北林业大学;2005年
7 刘欣;白桦木材耐腐能力差异和木腐菌腐朽木材基因差异表达[D];东北林业大学;2009年
8 史蔷;热处理对圆盘豆木材性能影响及其机理研究[D];中国林业科学研究院;2011年
9 李小清;白桦木材生物变色机理及防治研究[D];北京林业大学;2008年
10 陈志林;陶瓷化复合木材复合方法与性能的基础性研究[D];北京工业大学;2003年
相关硕士学位论文 前10条
1 曹文;微波处理对两种木材干燥特性的影响[D];浙江农林大学;2015年
2 袁沛沛;蔗糖/氮羟甲基树脂改性木材的涂饰、老化、防霉性能研究[D];东北林业大学;2016年
3 高悦文;古木材性退化人工模拟及其损伤本构模型的研究[D];扬州大学;2016年
4 范文俊;热处理毛白杨木材在节能门窗上的应用特性研究[D];华南农业大学;2016年
5 卢丹;热处理对香椿木材性能的影响研究[D];四川农业大学;2016年
6 李刚;利用原子转移自由基聚合方法的木材表面功能性改良[D];东北林业大学;2011年
7 于雷;计算机断层扫描技术在木材检测中的应用[D];东北林业大学;2007年
8 张丽春;木材表面犁铧预处理工艺及设备的研究[D];内蒙古农业大学;2001年
9 马瑞杰;化学成分及金属离子对木材热诱导变色的影响[D];北京林业大学;2012年
10 侯新毅;三种桉树木材的机械加工和透明涂饰性能研究[D];北京林业大学;2004年
,本文编号:1944971
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/1944971.html