基于车端关系试验台的列车相邻车端运动位姿模拟及试验研究
本文选题:轨道车辆 + 车端关系 ; 参考:《吉林大学》2017年博士论文
【摘要】:随着轨道交通行业的快速发展,高速动车组的最高运行速度不断提高,使得车辆端部各连接部件的运行环境更加恶劣,对列车运行的安全性和平稳性有着更严峻的考验和更高的要求。尤其是在列车通过曲线、道岔及变坡点时,车辆各个部件以及相邻车端之间的相对运动更加剧烈。因此,研究车辆运行中相邻车端的相对位姿及车端连接部件的运动状况,为车辆设计提供合理的车端间隙及车端各连接部件的合理布置方案,避免车辆运行中相邻车端各连接部件的运动干涉十分必要。车端关系研究方法包括路试、模拟仿真和台架试验。路试成本高、危险性大,模拟仿真可以弥补上述局限,并且试验周期短,适用不同车型及线路。但是模拟仿真要求的输入参数较多,有大量的近似及简化过程,与实际情况有一定差距。相比路试与模拟仿真,台架试验受外部环境影响较小,能够精确复现路况并开展路试中难以实现的极限工况测试,通过台架试验测取车端各部件运动参数,可为车辆端部设计提供试验依据。为此,中车长春轨道客车股份有限公司委托吉林大学开发研制了车端关系试验台,该试验台可以为列车相邻的两个车端提供六自由度运动模拟,本论文以车端关系试验台开发项目为依托,研究内容涵盖以下几个方面:(1)搭建列车-轨道系统动力学模型轨道模型由Frenet标架进行描述,给定轨道中心线上每一点的曲率半径、超高以及竖曲线对应的垂向坐标可计算出轨道的所有信息。建立3节车辆编组的列车模型,相邻车辆之间通过车端连接装置相连,每节车辆包含1个车体、2个构架和4个轮对,共42个自由度。建立车端连接装置动力学模型,包括车钩、车间减振器和风挡。车辆和轨道之间通过轮轨接触力耦合,建立包括轮轨接触几何关系、轮轨法向力和轮轨蠕滑力的轮轨接触模型。(2)研究车端关系试验台设计方案本文所设计的车端关系试验台由两个六自由度运动平台、14个作动器和两个车端模拟装置组成。通过协调控制14个作动器的运动驱动两个六自由度平台运动,以模拟实际列车运行时的车端运动姿态。试验台测量系统主要负责完成车端关系试验过程中相关数据的测量与采集,控制系统主要负责对试验台输入控制指令,协调各个作动器的伸缩量,实现运动平台的控制。监控系统用于监控试验台各部件的试验状态,确保试验的安全可靠。(3)研究车端关系试验台试验谱求解算法求解试验台作动器的控制指令是在试验台上实现车端运动姿态模拟的前提及关键技术。将轨道、列车和试验台作为一个系统进行研究,通过空间坐标位姿变换和位姿反解,从列车在线路运行时的位姿求解作动器的实时伸缩量。针对列车-试验台系统运动学模型和动力学模型两种不同模型提出两种试验谱求解算法。采用仿真分析求解14个作动器的控制指令,并对两种方法求解得到的控制指令进行对比分析。(4)基于仿真分析的车端相对位姿求解为确保台架试验的安全可靠,在台架试验之前建立车端关系试验台虚拟样机模型,将前面求解得到的14个作动器控制指令作为试验谱一一对应输入到所建模型中,通过仿真分析判断试验谱是否能够运用到台架试验中。同时求解得到车端的相对位姿,以便与台架试验的车端相对位姿实测数据进行对比分析,验证台架试验结果的准确性。(5)基于台架试验的车端相对位姿求解在仿真分析确认试验安全可行后,开展台架试验,对相邻车端在线路运行时的相对运动进行模拟。将台架试验实测数据与仿真分析结果进行对比分析,验证试验的准确性。通过试验所测取的车端相对位姿结果计算得到车钩摆角、风挡折角、车端错距以及两相邻车端墙的最小距离,对列车在线路运行时的车端运动状态进行评价。针对不同的线路条件,进行台架试验,并对不同的测试结果进行对比分析。
[Abstract]:With the rapid development of the rail transportation industry, the maximum speed of the high speed EMU is increasing, which makes the operating environment of the connecting parts of the end of the vehicle worse. It has a more severe test and higher requirement for the safety and stability of the train operation, especially when the train passes through the curve, switch and slope point. The relative motion between the parts and the adjacent vehicle ends is more intense. Therefore, the relative position and position of the adjacent vehicle end and the movement of the connecting parts of the vehicle end are studied, so as to provide a reasonable plan for the design of the end gap and the connecting parts of the vehicle end for the vehicle design, so as to avoid the movement of the connecting parts of the adjacent vehicles during the running of the vehicle. It is very necessary. The research methods of vehicle end relationship include road test, simulation simulation and bench test. The road test cost is high, and the simulation simulation can make up the above limitations. The simulation simulation can make up the above limitations, and the test cycle is short, it is suitable for different models and lines. However, there are many input parameters, a large number of approximation and simplification process, and one of the actual conditions. Compared to the road test and Simulation simulation, the bench test is less affected by the external environment. It can accurately reappear the road conditions and carry out the extreme condition test which is difficult to realize in the road test. Through the bench test, the motion parameters of each part of the vehicle can be measured, and the test basis can be provided for the end of the vehicle design. To this end, the Changchun railway passenger car Limited by Share Ltd of Zhong car is used. Jilin University has developed and developed a vehicle end relationship test platform, which can provide six degrees of freedom motion simulation for two adjacent train ends of the train. This paper is based on the development project of the vehicle end relationship test platform. The research content covers the following aspects: (1) building the model track model of the train track system dynamics model by the Frenet frame. Line description, given the curvature radius of each point on the center line of the track, the vertical coordinate corresponding to the vertical curve, all the information of the track can be calculated. A train model of 3 sections of vehicles is set up. The adjacent vehicles are connected by the end connection device, each vehicle contains 1 vehicles, 2 frames and 4 wheels, and a total of 42 degrees of freedom. The dynamic model of the terminal connection device includes the coupler, the workshop damper and the windshield. Between the wheel rail contact force coupling between the vehicle and the track, the wheel rail contact geometric relationship, the wheel rail normal force and the wheel rail creep force are established. (2) the design scheme of the vehicle end relation test rig is designed in this paper. Two six degrees of freedom motion platform, 14 actuators and two terminal simulation devices. Through coordinated control of the motion of 14 actuator, two six degrees of freedom platform motion is used to simulate the movement attitude of the actual train at the end of the train. The test system is mainly responsible for the measurement of related data in the test process of the vehicle end relationship and the measurement of the related data. Collecting, the control system is mainly responsible for the input control instruction to the test rig, coordinate the expansion of each actuator and realize the control of the motion platform. The monitoring system is used to monitor the test state of the test rig and ensure the safety and reliability of the test. (3) study the control point of the test bench for the test bench. It is the premise and key technology to simulate the motion posture simulation on the vehicle end on the test bench. The track, train and test bench are studied as a system. Through the spatial coordinate position and posture transformation and position attitude inverse solution, the real-time expansion of the actuator is solved from the position and posture of the train in the line running. Two different models of dynamic model are proposed for two test spectrum solving algorithms. The control instructions of 14 actuators are solved by simulation analysis, and the control instructions obtained by the two methods are compared and analyzed. (4) the solution of the relative position of the vehicle end based on the simulation analysis is safe and reliable to ensure the bench test, and it is established before the bench test. The virtual prototype model of the vehicle end relationship test rig is modeled by the 14 actuator control instructions obtained in front of the model as one of the test spectra and input into the model. By simulation analysis, it can be used to determine whether the test spectrum can be applied to the bench test. At the same time, the relative position and posture of the vehicle end are obtained so as to be relative to the end of the bench test. The test data is compared and analyzed to verify the accuracy of the test results of the bench. (5) the relative position and posture of the vehicle end based on the bench test is safe and feasible after the simulation analysis and confirmation test. The bench test is carried out to simulate the relative motion of the adjacent vehicle end in the line running. The test data of the bench test and the simulation analysis result are compared. To verify the accuracy of the test, by calculating the relative position and posture of the vehicle end of the test, the coupler swing angle, the windshield angle, the vehicle end error and the minimum distance between the two - phase car end wall are calculated. The train's motion state is evaluated when the train runs on the line. The bench test is carried out against different line road conditions, and the different test knots are carried out. The results were compared and analyzed.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:U270.14
【相似文献】
相关期刊论文 前10条
1 张正昌;高利利;;发动机出厂试验台架开发与应用[J];装备维修技术;2003年02期
2 李军;王燕波;付伟峰;王兴东;李红健;;汽车车门及罩盖操作试验台开发设计[J];机床与液压;2006年09期
3 查宏民;丁昕;李强;孙国权;;汽车座椅部件动态组合试验台的研究[J];测控技术;2009年05期
4 刘云鹏;李平康;杜秀霞;卜树峰;;新型综合传动试验台的设计与实现[J];机床与液压;2009年09期
5 赵海霞;周长哲;张海龙;杨洋;;混合动力汽车试验台架简介[J];工程与试验;2013年02期
6 王肇义;705型试验台简介[J];铁道车辆;1981年07期
7 刘云 ,许礼门;燃油试验台的制造与安装[J];洪都科技;1990年04期
8 唐维新,刘贱生;风扇试验台的设计与试验误差分析[J];湖南大学邵阳分校学报;1991年04期
9 邵伟国;周春树;陈建;;摩托车离合器综合试验台架及应用[J];摩托车技术;1993年01期
10 周力 ,张林;摇晃轴试验台架控制系统[J];工程机械;2003年05期
相关会议论文 前8条
1 李军;王燕波;付伟峰;王兴东;李红建;;汽车车门及罩盖气动操作试验台设计[A];第四届全国流体传动与控制学术会议论文集[C];2006年
2 孙仁云;;汽车发动机液力挺柱试验台的设计[A];首届信息获取与处理学术会议论文集[C];2003年
3 徐春华;牛继高;;电动助力转向系统试验及结果分析[A];第六届河南省汽车工程科技学术研讨会论文集[C];2009年
4 孙仁云;;汽车发动机液力挺柱试验台的设计[A];全面建设小康社会:中国科技工作者的历史责任——中国科协2003年学术年会论文集(上)[C];2003年
5 黄菠;何云强;李晓波;吴亚东;;发动机电力测功机试验台研制[A];2013中国汽车工程学会年会论文集[C];2013年
6 户冬;;气道试验台及4种评价方法介绍[A];2010重庆汽车工程学会年会论文专辑[C];2010年
7 江征风;徐少波;;长圆弧弹簧静刚度的检测[A];湖北省机械工程学会设计与传动学会、武汉机械设计与传动学会2008年学术年会论文集(1)[C];2008年
8 申超;路培斗;孟甲凡;高明明;;AMT联调试验台架设计[A];自主创新、学术交流——第十届河南省汽车工程科学技术研讨会论文集[C];2013年
相关重要报纸文章 前1条
1 曾菊敏;试验专业领军人[N];中国航空报;2004年
相关博士学位论文 前2条
1 张兰;基于车端关系试验台的列车相邻车端运动位姿模拟及试验研究[D];吉林大学;2017年
2 刘巍;轻型汽车转向稳定性控制算法及硬件在环试验台研究[D];吉林大学;2007年
相关硕士学位论文 前10条
1 白永彬;制动阀中间体试验台的研制[D];西南交通大学;2014年
2 黄清健;高速列车摩擦制动噪声缩比试验台的研制[D];西南交通大学;2015年
3 陈道泉;多轴车辆的柔性试验技术研究[D];浙江大学;2015年
4 李金朋;轮式点状液态注肥机开发与试验[D];西北农林科技大学;2015年
5 刘文峰;秸秆粉碎机性能测试试验台设计[D];安徽农业大学;2014年
6 聂兆霖;矿用自卸车落物和滚翻保护装置试验台设计及结构分析[D];吉林大学;2016年
7 杨辰;某高速旋转试验台振动特性分析[D];南京理工大学;2016年
8 张保针;混合动力试验台架的测控系统研发[D];西安建筑科技大学;2016年
9 张雷;制动器试验台气压制动系统研究与仿真[D];西安建筑科技大学;2016年
10 夏石友;CVT试验台控制系统的研究与开发[D];湖南大学;2015年
,本文编号:2050592
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2050592.html