当前位置:主页 > 硕博论文 > 工程博士论文 >

交流机车PWM整流器谐波特性优化控制与调制算法研究

发布时间:2018-07-07 07:27

  本文选题:牵引传动系统 + 牵引供电系统 ; 参考:《北京交通大学》2017年博士论文


【摘要】:随着我国电气化铁路事业的高速发展,电力机车牵引传动技术已完成了从传统直流传动技术到新型交流传动技术的升级。交流机车仍向网侧注入一定含量的低次谐波电流,对电网环境造成污染,也引起过网压畸变并导致车辆启动故障。在车网电气匹配失稳的工况下,交流机车发出的少量高次谐波电流/电压就可在牵引网产生显著的谐波放大现象,从而引发牵引供电系统高次谐波谐振,我国已有超过10条线路发生多起谐振事故,严重影响了铁路系统的安全稳定运营。作为车网耦合系统中的谐波源,交流机车谐波特性主要取决于其牵引传动系统网侧的单相PWM整流器,因此本文以大量实测工作反映出的车网谐波问题作为出发点,以谐波治理、谐振抑制为目标,对PWM整流器谐波特性优化控制和调制算法开展一系列的研究工作。对单相PWM整流器两种典型拓扑(两电平H桥和三电平二极管箝位型)进行了数学建模,研究了交流机车PWM整流器3种常规控制策略,分析了常用的载波PWM(Carrier Based PWM,CBPWM)的基本原理。运用双边傅里叶级数解析CBPWM过程,得到了高次谐波电流特性,从闭环控制的角度分析了低次谐波电流产生的机理。以CRH380AL动车组实测数据为基础,进行了交流机车网侧电流谐波特性解析、仿真和实测的综合分析。运用内模原理证明了要实现对正弦电流的无静差跟踪和正弦电压扰动的抑制,必须在控制器植入相应频率的正弦量内模。基于这一原理,设计多重化准比例谐振(Multiple Quasi-Proportional Integral,M-Q-PR)控制器调节网侧电流基波及低次谐波分量,并在直流侧电压反馈回路引入多重化陷波滤波器(Multiple Notch Filter,M-NF)滤除直流电压脉动对电流低次谐波的影响。基于上述研究提出了一种单相PWM整流器M-Q-PR+M-NF控制策略抑制交流机车网侧电流低次谐波,并对提出的算法的可靠性和有效性进行了仿真和实验验证。运用简化等效电路模型分析了车网谐波耦合机理和牵引供电系统高次谐波谐振特性。基于特定谐波消除 PWM(Selective Harmonic Elimination PWM,SHE-PWM)技术,并根据实际谐振规律和特性,规划单相多重化SHE-PWM问题,提出了一种窗口化特定谐波消除 PWM(Windowed Selective Harmonic Elimination PWM,WSHE-PWM)。WSHE-PWM可消除1000Hz以内所有低次谐波,在1000~3500Hz范围提供500Hz带宽高次谐波消除能力,因此可覆盖不同供电区段的不同谐振频率。WSHE-PWM算法的设计预留了谐波控制冗余,可在离线环境解得较宽范围的连续开关角度解,并直接应用于经典闭环控制系统中。车网联合仿真结果证明了在传统PWM方式引起车网系统谐振时,采用WSHE-PWM可以有效抑制谐振,在等效谐振电路上的实验结果进一步证明了 WSHE-PWM的谐振抑制作用。将有限控制集模型预测控制(Finite Control Set Model Predictive Control,FCS-MPC)与WSHE-PWM结合,提出了一种WSHE-MPC控制算法。与常规双闭环控制策略相比,该算法通过设计动态参考电流实现单闭环结构下的多目标控制,控制系统不采用PI控制器充分发挥了 FCS-MPC快速动态响应特性。与标准FCS-MPC相比,该算法将WSHE-PWM作为控制输入的约束条件引入目标函数,克服了变流器开关频率和输出频谱不固定的缺陷。仿真结果验证了 WSHE-MPC算法的稳态频谱特性和快速动态响应特性。
[Abstract]:With the rapid development of the electrified railway in China, the traction drive technology of electric locomotive has completed the upgrading from the traditional DC transmission technology to the new type of AC transmission technology. The AC locomotive still injects a certain amount of low harmonic current into the network side, causes pollution to the power grid environment, and causes the distortion of over network pressure and causes the vehicle start fault. A small amount of high order harmonic current / voltage issued by the AC locomotive can produce a significant harmonic amplification phenomenon in the traction network, resulting in high harmonic harmonic resonance in traction power supply system. There are more than 10 lines of resonance accidents in China, which seriously affects the safe and stable operation of the railway system. For the harmonic source in the car network coupling system, the harmonic characteristics of the AC locomotive depend mainly on the single-phase PWM rectifier of the traction drive system. Therefore, this paper takes the harmonic problem of a large number of measured work as the starting point, the harmonic control and the resonance suppression as the target, the harmonic characteristic optimization control and the modulation algorithm of the PWM rectifier. A series of research work is carried out. Two typical topologies of single phase PWM rectifier (two level H bridge and three level diode clamp type) are modeled and 3 conventional control strategies for AC locomotive PWM rectifier are studied. The basic principle of common carrier PWM (Carrier Based PWM, CBPWM) is analyzed. The characteristic of high order harmonic current is obtained. The mechanism of low order harmonic current is analyzed from the angle of closed loop control. Based on the measured data of CRH380AL EMU, the harmonic characteristic analysis, simulation and measurement are carried out on the side current of the AC locomotive. And the suppression of sinusoidal voltage disturbance must be embedded in the sinusoidal internal mode of the corresponding frequency in the controller. Based on this principle, the Multiple Quasi-Proportional Integral (M-Q-PR) controller is designed to adjust the base and low harmonic components of the network side, and the multiple notch filter is introduced in the DC side voltage feedback loop. Multiple Notch Filter, M-NF) filter the influence of DC voltage pulsation on low current harmonic current. Based on the above study, a single phase PWM rectifier M-Q-PR+M-NF control strategy is proposed to suppress low frequency harmonic in the AC locomotive network side current, and the reliability and effectiveness of the proposed algorithm are verified by simulation and experimental verification. The simplified equivalent circuit is used. The harmonic coupling mechanism of the vehicle network and the high harmonic resonance characteristics of the traction power supply system are analyzed. Based on the specific harmonic elimination PWM (Selective Harmonic Elimination PWM, SHE-PWM) technology, and according to the actual resonance laws and characteristics, a single phase multiplex SHE-PWM problem is planned, and a window specific harmonic elimination PWM (Windowed Selecti) is proposed. Ve Harmonic Elimination PWM, WSHE-PWM).WSHE-PWM can eliminate all low harmonics within 1000Hz, and provide 500Hz bandwidth high harmonic elimination ability in the range of 1000 to 3500Hz, so it can cover different resonant frequency.WSHE-PWM algorithms of different power supply sections and reserve harmonic control redundancy, which can be solved in a wider range in the off-line environment. The combined simulation results show that WSHE-PWM can effectively suppress resonance when the traditional PWM mode caused the resonance of the car network system, and the experimental results on the equivalent resonant circuit prove the resonance suppression of the WSHE-PWM. The finite control set model is preformed. Finite Control Set Model Predictive Control (FCS-MPC) and WSHE-PWM are combined with WSHE-PWM, and a WSHE-MPC control algorithm is proposed. Compared with the conventional double closed loop control strategy, the algorithm realizes the multi target control under the single closed loop structure by designing the dynamic reference current, and the control system does not use the PI controller to give full play to the FCS-MPC fast motion. Compared with the standard FCS-MPC, the algorithm introduces the WSHE-PWM as the constraint condition of the control input to the target function, and overcomes the defect that the switching frequency and the output spectrum of the converter are not fixed. The simulation results verify the steady-state spectrum characteristic and the fast dynamic response characteristic of the WSHE-MPC algorithm.
【学位授予单位】:北京交通大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:U264.91

【相似文献】

相关期刊论文 前10条

1 刘铮;王翠;彭永进;;优化开关频率的空间矢量调制算法[J];高电压技术;2008年06期

2 刘小素;陈昌;;级联H桥多电平变流器优化调制算法研究[J];仪器仪表用户;2011年01期

3 易龙强;戴瑜兴;郜克存;;一种基于DSP的(可变频)异步调制算法[J];湖南科技大学学报(自然科学版);2006年03期

4 高莹;谢吉华;李赓;;SVPWM过调制算法的分析和仿真[J];微特电机;2007年06期

5 王翠;刘铮;彭永进;;一种快速的多电平空间矢量调制算法[J];高电压技术;2009年06期

6 余亚冰;于波;王进花;;三相四开关并联型APF的SVPWM调制算法研究[J];自动化与仪器仪表;2012年01期

7 唐酿;肖湘宁;陈征;徐永海;;矩阵变流器虚拟逆变侧无扇区调制算法[J];中国电机工程学报;2012年09期

8 董侃;刁利军;赵雷廷;刘志刚;;基于基本矢量钳位策略的过调制算法研究[J];铁道学报;2014年06期

9 张立伟,温旭辉,刘钧,陈桂兰;一种新颖的分段连续控制SVPWM过调制算法[J];中小型电机;2005年07期

10 吕敬;张建文;王晗;蔡旭;;SVPWM过调制算法的理论分析与实验应用[J];电气传动;2011年08期

相关会议论文 前2条

1 刘海云;韩继征;李玉仓;张浩;胡雪生;;交直交变频三电平矢量脉宽调制模式的原理及调制算法探讨[A];第十一届全国自动化应用技术学术交流会论文集[C];2006年

2 刘贺;姜建国;陈成辉;陈四熊;彭霞;;一种新型五电平空间矢量调制算法[A];第七届中国高校电力电子与电力传动学术年会论文集[C];2013年

相关博士学位论文 前1条

1 宋可荐;交流机车PWM整流器谐波特性优化控制与调制算法研究[D];北京交通大学;2017年

相关硕士学位论文 前6条

1 陆庆;变载频调制算法下逆变器谐波抑制与滤波器设计的研究[D];温州大学;2015年

2 郑志军;电力牵引永磁同步电机矢量控制与调制算法研究[D];西南交通大学;2016年

3 马伟天;中点钳位型H桥级联单相整流器SVPWM调制算法研究[D];西南交通大学;2016年

4 冯俊飞;OFDM-PON自适应调制算法的研究与实现[D];上海大学;2014年

5 宛世源;SVPWM过调制算法研究与实现[D];华中科技大学;2014年

6 罗方利;五电平逆变器空间矢量调制算法的简化研究[D];太原科技大学;2014年



本文编号:2104238

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2104238.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户606d7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com