当前位置:主页 > 硕博论文 > 工程博士论文 >

L-谷氨酸对果实抗性的诱导作用及其相关机理研究

发布时间:2018-07-20 14:13
【摘要】:在果实采后贮运实践中,由真菌病害引起的果实腐烂会造成经济上的巨大损失。尽管化学杀菌剂仍然是控制采后病害的主要防治方法,但在健康环保的理念指导下,其使用种类和范围愈发严格和局限。通过化学、物理或者生物手段激发果实内在的抗性机制防御病害已成为果实采后病害防治的新概念和新手段。作为生物体内最重要的氨基酸之一,L-谷氨酸及其钠盐被广泛应用于实际生活中的各个领域,具有安全环保,价格低廉,容易获得且使用简单等特点。L-谷氨酸在植物代谢中占据极为重要的地位,不仅参与合成多种与增强植物抗逆性相关的代谢物质,且在非生物胁迫下的逆境响应中发挥重要作用。然而目前有关它在植物病害防御反应中的作用鲜有报道。本论文以L-谷氨酸作为外源诱导因子,探讨其对果实采后病害的防治效果,并通过基因、蛋白、物质等多个水平和角度系统分析研究了 L-谷氨酸对果实的抗性反应机制。研究结果不仅为开发基于L-谷氨酸的新型保鲜剂提供理论依据,而且可为研究植物抗性提供新的视角和策略。主要研究结果如下:(1)L-谷氨酸可以通过诱导果实(梨、番茄、柑橘)自身的抗性来抵御或延缓其采后病害的发展,且抑制效力与诱导时间(24h以上)、处理浓度(100mg U1以上)等因素密切相关。L-谷氨酸不论是以采前喷洒还是采后处理的方式均可有效提高果实对采后病原菌的抵御能力,在果实的防腐保鲜领域有广阔的应用前景。(2)L-谷氨酸作为γ-氨基丁酸(GABA)前体物质,激活了番茄果实体内GABA支路上与GABA合成和代谢相关关键基因的表达;而用外源GABA处理可有效抵御番茄果实腐生型病原菌Alternariaalternate的侵染,其机理与激活果实体内GABA支路有关。GABA支路的激活一方面可能与三羧酸(TCA)循环路径的加强为防御反应提供更多的能量有关;另一方面可能是阻止了活性氧的积累减少了细胞死亡从而不利于腐生型病原菌的侵染。因此,L-谷氨酸对番茄果实抗性的诱导机制可能与GABA支路密切相关。(3)呼吸跃变型果实番茄经L-谷氨酸处理后,其体内的主要氮代谢路径谷氨酰胺合成酶/谷氨酸合成酶(GS/GOGAT)循环上的GS被激活,同时,与碳代谢有关的糖酵解路径上编码己糖激酶和丙酮酸激酶的基因和TCA循环中的苹果酸脱氢酶和琥珀酸脱氢酶均被强烈诱导表达。也就是说,L-谷氨酸对A.alternata的抗性机制可能与碳氮代谢路径的激活有关。(4)番茄果实经L-谷氨酸处理后,与水杨酸合成和信号路径相关的基因,如PAL、NPR1、TGA1、TGA2、WRKY70和PR基因,其转录水平明显上调;乙烯合成路径上的两个关键乙烯合成酶基因ACS、ACO和乙烯受体ETR3、ETR4的转录表达被强烈抑制;茉莉酸合成路径上的LOX1、AOS2、AOC呈下调表达趋势,其信号转导路径上的茉莉酸受体COI1,正调控转录因子MYC2和茉莉酸诱导的蛋白酶抑制剂PI-Ⅱ的转录水平下降的同时,负调控转录因子JAZ1则有一定的上调趋势。由上可知,L-谷氨酸对番茄果实采后黑斑病的抗性机制可能依赖于水杨酸的合成和信号传导路径;同时谷氨酸对乙烯/茉莉酸合成与信号路径存在一定的抑制作用。(5)同重同位素相对与绝对定量(iTRAQ)试验结果显示,经L-谷氨酸处理后的番茄果实相对于对照组有97个蛋白显著上调表达,42个蛋白显著下调表达,且这些差异蛋白显著富集于植物与病原菌互作、苯丙烷类合成、能量代谢(氧化磷酸化和多糖类分解路径)、脂肪酸代谢等与植物抗性反应密切相关的代谢路径上。(6)通过气相色谱质谱联用(GC-MS)技术分析了 谷氨酸对番茄果实物质含量的变化,结果显示,L-谷氨酸可能激活了果实的能量代谢、氨基酸代谢和水杨酸信号路径,同时对乙烯/茉莉酸合成路径有一定的抑制效果。(7)对于呼吸非跃变型果实柑橘转录表达谱的试验结果表明,在未接种病原菌Penicillium digitatum条件下,经L-谷氨酸处理后的柑橘果实相对于对照组有623个基因上调表达,647个下调表达;在接种病原菌的条件下,L-谷氨酸处理组则有234个上调基因,193个下调基因。这些差异基因涉及碳代谢,氨基酸代谢,植物激素代谢和次级代谢等多条与果实抗性密切相关的路径。综上所述,L-谷氨酸可以通过诱导果实抗性有效抵御果实的病害,其机理可能与激活GABA支路、碳氮代谢和水杨酸路径,同时抑制乙烯/茉莉酸路径有关。
[Abstract]:In the practice of postharvest storage and transportation of fruit, fruit decay caused by fungal diseases will cause great economic loss. Although chemical fungicides are still the main control methods for controlling postharvest diseases, under the guidance of the concept of health and environmental protection, the types and limits of their use and scope are more stringent and limited. The inherent resistance mechanism of the fruit has become a new concept and new means for the prevention and control of postharvest diseases of the fruit. As one of the most important amino acids in the organism, L- glutamic acid and its sodium salt are widely used in various fields of real life. It has the characteristics of safe and environmental protection, low price, easy access and simple use of.L- glutamic acid. Plant metabolism occupies a very important position, not only to participate in the synthesis of a variety of metabolic substances related to stress resistance, but also plays an important role in the response to abiotic stress. However, there are few reports on its role in the plant disease defense response. This paper uses L- glutamic acid as a exogenous inducer. The prevention and control effect on postharvest diseases of fruit was discussed, and the resistance mechanism of L- glutamic acid to fruit was studied through multiple levels and angles of genes, proteins and substances. The results not only provide a theoretical basis for the development of a new type of fresh preservative based on L- glutamic acid, but also provide a new perspective and strategy for the study of plant resistance. The main results are as follows: (1) L- glutamic acid can resist or delay the development of postharvest diseases by inducing the resistance of the fruit (pear, tomato, citrus) itself, and the inhibition effect and induction time (above 24h), the treatment concentration (100mg U1) and other factors closely related to.L- glutamic acid, whether by pre harvest spraying or after postharvest treatment It can effectively improve the resistance of fruit to Postharvest Pathogens, and has broad application prospects in the field of fruit preservation and preservation. (2) L- glutamic acid as a precursor of gamma aminobutyric acid (GABA) activates the expression of key genes related to GABA synthesis and metabolism in the GABA branch of tomato fruit, and the exogenous GABA treatment can effectively resist tomatoes. The infection of the fruit saprophytic pathogen Alternariaalternate, its mechanism and activation of the.GABA branch related to the activation of the GABA branch in the fruit of the fruit may be related to the strengthening of the three carboxylic acid (TCA) cycle path to provide more energy for the defense response; on the other hand, it may prevent the accumulation of active oxygen and reduce cell death. The induction mechanism of L- glutamic acid on tomato fruit resistance may be closely related to the GABA branch. (3) after L- glutamic acid treatment, the main nitrogen metabolism pathway of the respiratory climacteric fruit tomato is activated by the GS on the cycle of glutamine synthetase / glutamic synthetase (GS/ GOGAT). At the same time, it is associated with carbon metabolism. The genes encoding hexokinase and pyruvate kinase in the glycolysis pathway and the malate dehydrogenase and succinic dehydrogenase in the TCA cycle are strongly induced. That is to say, the resistance mechanism of L- glutamic acid to A.alternata may be related to the activation of carbon and nitrogen metabolism pathway. (4) the fruit of tomato is treated with Salicylic acid after L- glutamic acid treatment. Genes related to the pathway of signaling, such as PAL, NPR1, TGA1, TGA2, WRKY70 and PR genes, are significantly up-regulated, and the two key ethylene synthetase genes on the ethylene synthesis pathway, ACS, ACO and ethylene receptor ETR3, are strongly suppressed in the transcriptional expression of ETR4; the LOX1 on the jasmonic acid synthesis pathway is downregulated and its signal turns Jasmonate receptor COI1 on the guide path, the transcriptional level of the transcriptional factor MYC2 and the jasmonic acid induced protease inhibitor PI- II, while the negative regulatory transcription factor JAZ1 has a certain upward trend. It is known that the resistance mechanism of L- glutamic acid to the Postharvest black spot of tomato fruit may be dependent on the synthesis and letter of salicylic acid. There was a certain inhibitory effect of glutamic acid on the synthesis of ethylene / jasmonic acid and signal pathway. (5) the results of the relative and absolute quantitative (iTRAQ) test of the same heavy isotopes showed that 97 proteins in the tomato fruit treated with glutamic acid were significantly expressed in comparison with the control group, and the 42 proteins were significantly down expressed, and these differences were different. The protein was significantly enriched in the interaction of plant and pathogenic bacteria, synthesis of phenylpropane, energy metabolism (oxidation phosphorylation and polysaccharide decomposition pathway), fatty acid metabolism and other metabolic pathways closely related to plant resistance. (6) the results of the changes in the material content of tomato fruit by GC / MS (GC-MS) were analyzed. The results showed that L- glutamic acid may activate the energy metabolism of fruit, amino acid metabolism and the pathway of salicylic acid signal, and have certain inhibitory effects on the synthesis pathway of ethylene / jasmonic acid. (7) the results of the transcription of Citrus transcriptional expression of non climacteric fruit show that L- glutamic acid under the condition of unplanted pathogen Penicillium digitatum There were 623 up-regulated genes and 647 down-regulated genes in the citrus fruits compared with the control group. Under the condition of inoculation, the L- glutamic acid treatment group had 234 up-regulated genes and 193 down-regulation genes. These genes involved carbon metabolism, amino acid metabolism, plant irritable Sudache and secondary metabolism, which were closely related to the fruit resistance. In summary, L- glutamic acid can effectively resist fruit disease by inducing fruit resistance. The mechanism may be related to the activation of the GABA branch, carbon and nitrogen metabolism and salicylic acid pathway, and the inhibition of the ethylene / jasmonate pathway.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TS255.3

【相似文献】

相关期刊论文 前10条

1 李京;惠伯棣;裴凌鹏;;番茄果实在成熟过程中类胡萝卜素含量的变化[J];中国食品学报;2006年02期

2 卢丞文;潘晓琪;田慧琴;罗云波;朱本忠;;番茄果实中蛋白质的提取和双向电泳条件的优化[J];食品科技;2010年10期

3 刘零怡;于萌萌;郑杨;生吉萍;申琳;;采后一氧化氮处理调控番茄果实茉莉酸类物质合成并提高灰霉病抗性[J];食品科学;2010年22期

4 秦公伟;曹小勇;陈德经;殷荷兰;党文娟;;多个番茄果实样品脂肪酸含量及组成比较分析[J];食品工业科技;2012年15期

5 李翠丹;申琳;生吉萍;;一氧化氮参与水杨酸诱导的采后番茄果实抗病性反应[J];食品科学;2013年08期

6 李轶,张振;沼液对番茄果实品质的影响[J];中国沼气;2001年01期

7 潘晓琪;朱本忠;傅达奇;罗云波;;红熟期番茄果实根霉果腐病与相关酶活性变化的研究[J];食品科技;2011年03期

8 任邦来;胡玉琴;;壳聚糖处理番茄的保鲜效果研究[J];中国食物与营养;2012年05期

9 于萌萌;申琳;生吉萍;;茉莉酸甲酯诱导采后番茄果实抗病的作用[J];食品科学;2012年09期

10 魏宝东,姜炳义,冯辉;番茄果实货架期硬度变化及其影响因素的研究[J];食品科学;2005年03期

相关会议论文 前10条

1 董彩霞;周健民;范晓晖;王火焰;段增强;;花期减少施钙量对不同钙效率番茄果实钙形态和含量的影响[A];第八届全国青年土壤暨第三届全国青年植物营养与肥料科学工作者学术讨论会论文集[C];2002年

2 王艳;张其安;方凌;田红梅;严从生;江海坤;王明霞;;不同颜色番茄果实转色期相关酶活性的研究[A];中国园艺学会2013年学术年会论文摘要集[C];2013年

3 王楠;崔娜;张佳楠;范海延;李天来;;茉莉酸信号对不同发育时期番茄果实中糖含量的影响[A];中国园艺学会2013年学术年会论文摘要集[C];2013年

4 石正强;沈火林;;营养液电导度的增加和不同栽培基质对温室番茄果实中抗氧化物质含量的影响[A];中国园艺学会第五届青年学术讨论会论文集[C];2002年

5 朱为民;李锋;;番茄果实裂性与耐压性[A];中国园艺学会首届青年学术讨论会论文集[C];1994年

6 陈劲憬;高丽红;;番茄采收时期对其营养品质及贮藏品质的影响[A];中国园艺学会第七届青年学术讨论会论文集[C];2006年

7 王昕;李建桥;任露泉;;番茄果实采收后的硬度测定及其变化规律[A];农业机械化与全面建设小康社会——中国农业机械学会成立40周年庆典暨2003年学术年会论文集[C];2003年

8 王昕;李建桥;任露泉;;番茄果实采收后的硬度测定及其变化规律[A];中国农业机械学会成立40周年庆典暨2003年学术年会论文集[C];2003年

9 杨宝军;郭淑华;王晓武;杜永臣;;Brazzein甜蛋白基因克隆及其番茄果实特异表达载体构建[A];蔬菜分子育种研讨会论文集[C];2004年

10 韩峰;沈世华;;番茄果实成熟过程质体分化及hp-1突变对该分化过程的影响的蛋白质组学研究[A];第三届全国植物蛋白质组学大会摘要集[C];2010年

相关重要报纸文章 前8条

1 三河市农业技术推广总站 刘艳平;番茄果实异常的原因及防治[N];河北科技报;2012年

2 玉田县农牧局 苏亚东;为何番茄着色不良[N];河北科技报;2014年

3 唐山市玉田县农牧局 苏亚东;番茄着色不良的解决措施[N];河北农民报;2014年

4 田玉龙邋盛长存;番茄红了,农民笑了[N];张掖日报;2008年

5 田玉龙邋盛长存;番茄红了富裕高台乡亲[N];农民日报;2008年

6 辛集市植保站 陈书乔;怎样预防番茄茶色果和绿肩果[N];河北科技报;2010年

7 饶阳县农牧局农广校 魏俊转;选择番茄品种有说道[N];河北科技报;2013年

8 石家庄辛集市植保站 陈书乔;夏季露地番茄谨防裂果[N];河北农民报;2013年

相关博士学位论文 前10条

1 孙倩倩;外源褪黑素对番茄果实采后成熟的影响[D];中国农业大学;2016年

2 于洋;外源GA_3和ABA对番茄果实主要色素形成的影响及生理机制研究[D];沈阳农业大学;2016年

3 李珊;番茄果实中重要转录因子MADS-RIN的功能分析[D];中国农业大学;2017年

4 杨佳丽;L-谷氨酸对果实抗性的诱导作用及其相关机理研究[D];浙江大学;2017年

5 李家寅;生长素及生长素-乙烯互作调控番茄果实成熟的效应与机理[D];浙江大学;2017年

6 姜峰;拮抗酵母诱导番茄果实抗性基因的分离与功能鉴定[D];浙江大学;2008年

7 张红星;番茄中乙烯信号转录因子LeERF1和LeERF2调控机制研究[D];中国农业大学;2005年

8 寇晓虹;番茄多聚半乳糖醛酸酶(PG)反义基因表达及相关功能研究[D];中国农业大学;2003年

9 汪淑芬;FRUITFULL调控番茄果实发育与成熟的机理研究[D];华中农业大学;2014年

10 刘丽红;茉莉酸和油菜素甾醇调控番茄果实类胡萝卜素积累的机理研究[D];浙江大学;2015年

相关硕士学位论文 前10条

1 李成;番茄果实的基础物理特征及力学性质的研究与应用探讨[D];东北农业大学;2005年

2 王绍会;利用Solanum galapagense重组自交系对番茄果实重量、形状和可溶性固形物含量的QTL定位分析[D];中国农业科学院;2015年

3 王敏;不同体积限根对番茄生长发育及品质的影响[D];宁夏大学;2015年

4 孔俊花;SlymiR156/7和SlCMT3对番茄果实成熟关键基因LeSPL-CNR转录调控机制的研究[D];杭州师范大学;2015年

5 宋敏;番茄SlEIL对乙烯合成的转录调控[D];浙江大学;2014年

6 李洁;外源NO和乙烯处理对番茄采后品质及乙烯合成相关基因表达的影响[D];新疆农业大学;2015年

7 吕洁;LYC-B沉默对番茄果实挥发性物质和品质性状的影响[D];西北农林科技大学;2016年

8 周枫;采收成熟度、1-MCP和乙烯处理对番茄果实冷害和贮藏效果的影响[D];沈阳农业大学;2016年

9 朱珍;赤霉素调控采后番茄果实抗冷机制研究[D];中国农业科学院;2016年

10 张敏慧;番茄果实大小的QTL定位[D];华中农业大学;2016年



本文编号:2133800

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2133800.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a5a58***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com