石墨烯纤维的可控制备与应用研究
[Abstract]:As a two-dimensional carbon based nanomaterial, graphene has only one atomic thickness, with excellent mechanical, electrical, thermal and optical properties. The one-dimensional, two-dimensional and three-dimensional materials based on graphene have a very broad application prospect in transparent conductive films, energy storage materials, catalyst carriers, gas sensitive materials, single molecule detectors and so on. The one-dimensional fiber materials of graphene and its composites have the characteristics of high strength, high conductivity, flexible weaving and easy processing. It is suitable for the preparation of ultralight wire, flexible wearable device and intelligent fabric. Most of the reports about graphene fiber are mainly focused on improving the fracture strength of the fiber, but because of it, The brittle fracture of graphene fibers is often low and its flexibility needs to be improved. The unique spiral structure of graphene fibers in this paper can simultaneously obtain high strength and high elastic characteristics and help to further develop high performance tensile and wearable devices. In this paper, the improved Hummers method and sulfuric acid are used in this paper. The high pure oxygen fossil Mexico was prepared by the phosphoric acid Potassium Permanganate system. The flexible and transparent graphene oxide film was prepared by the casting process. It was reduced by different reduction methods. The changes of morphology and properties before and after reduction were studied. It was found that after reduction of 45% hydroiodic acid, the surface of graphene film could be kept to the surface before reduction to the maximum. The large area of graphene oxide films prepared on the polytetrafluoroethylene base are cut into strips of different width after natural drying and dry spinning, and the strips are woven into different diameters of graphite oxide spiral fibers with a long continuous spiral structure by using water vapor to adjust the humidity of the graphene oxide film. The spiral structure of the spiral is uniform, the spiral inclination is consistent, the surface is smooth, and it has the characteristic of flexible and extensible. The spiral fiber of the graphite oxide spiral fiber is reduced by the reduction of the hydroiodic acid. The spiral structure of the spiral fiber is kept constant and the surface of the fiber is smooth and continuous. The spiral fiber of graphene has good mechanical properties and its strength is 12. MPa, the maximum fracture strain is 60%, and the elastic recovery performance is good under the 20% tensile cycle. The resistance assumes a regular change during the stretching process and the resistance linearly decreases with the increase of strain. After several cycles, the change law is still stable. The resistance of the fiber is measured with the change of temperature. The resistance decreases with the increase of temperature, mainly due to the behavior characteristics of the graphene. It is found that the high temperature and strain range of 300O C at different tensile strains of 0%~50% show stable thermal properties, and have the potential price for the flexible thermosensitive devices. The conductive graphene spiral fiber has the characteristics of the axial penetration microchannel and the hydrophobicity of the graphene. The electrical suction prepared by it has a good controllable switching performance and the threshold voltage is -0.8V. The theoretical calculation and the actual test have the same channel size, about 100 nm. When the liquid is sucked to saturation, it can absorb itself. In order to further improve the properties of graphene spiral fibers, a new method of preparation of graphene oxide carbon nanotube composite films is proposed in this paper, which is different from the preparation of composite films by mechanical agitation. This method can be used to prepare homogeneous and alternate superimposition of oxidizing stone carbon nanotube composite thin films. Based on this composite thin film, the composite thin film can be prepared. In the process of adsorption and desorption of water, ethanol and acetone, the film made of graphene oxide carbon nanotube composite spiral fiber can produce good actuation effect and can pull up a weight about 300 times of its own weight. The maximum fracture strength of graphene carbon nanotube complex spiral fiber obtained by hydrogen iodic acid reduction reaches 135 MPa, and the maximum strength is up to 135. The strain of the large fracture is 130%, which is 10 times and 2 times that of the pure graphene spiral fiber. As a temperature sensor, its linearity is better with the temperature change, the response degree is higher than that of the pure graphene spiral fiber, which is 7 times that of the pure graphene spiral fiber. The electrochemical performance is 44 m F/cm2. at a specific capacitance of 100 m V/s.
【学位授予单位】:郑州大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ342.74
【相似文献】
相关期刊论文 前10条
1 ;科学家首次用纳米管制造出石墨烯带[J];电子元件与材料;2009年06期
2 ;石墨烯研究取得系列进展[J];高科技与产业化;2009年06期
3 ;新材料石墨烯[J];材料工程;2009年08期
4 ;日本开发出在蓝宝石底板上制备石墨烯的技术[J];硅酸盐通报;2009年04期
5 马圣乾;裴立振;康英杰;;石墨烯研究进展[J];现代物理知识;2009年04期
6 傅强;包信和;;石墨烯的化学研究进展[J];科学通报;2009年18期
7 ;纳米中心石墨烯相变研究取得新进展[J];电子元件与材料;2009年10期
8 徐秀娟;秦金贵;李振;;石墨烯研究进展[J];化学进展;2009年12期
9 张伟娜;何伟;张新荔;;石墨烯的制备方法及其应用特性[J];化工新型材料;2010年S1期
10 万勇;马廷灿;冯瑞华;黄健;潘懿;;石墨烯国际发展态势分析[J];科学观察;2010年03期
相关会议论文 前10条
1 成会明;;石墨烯的制备与应用探索[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 钱文;郝瑞;侯仰龙;;液相剥离制备高质量石墨烯及其功能化[A];中国化学会第27届学术年会第04分会场摘要集[C];2010年
3 张甲;胡平安;王振龙;李乐;;石墨烯制备技术与应用研究的最新进展[A];第七届中国功能材料及其应用学术会议论文集(第3分册)[C];2010年
4 赵东林;白利忠;谢卫刚;沈曾民;;石墨烯的制备及其微波吸收性能研究[A];第七届中国功能材料及其应用学术会议论文集(第7分册)[C];2010年
5 沈志刚;李金芝;易敏;;射流空化方法制备石墨烯研究[A];颗粒学最新进展研讨会——暨第十届全国颗粒制备与处理研讨会论文集[C];2011年
6 王冕;钱林茂;;石墨烯的微观摩擦行为研究[A];2011年全国青年摩擦学与表面工程学术会议论文集[C];2011年
7 赵福刚;李维实;;树枝状结构功能化石墨烯[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
8 吴孝松;;碳化硅表面的外延石墨烯[A];2011中国材料研讨会论文摘要集[C];2011年
9 周震;;后石墨烯和无机石墨烯材料:计算与实验的结合[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
10 周琳;周璐珊;李波;吴迪;彭海琳;刘忠范;;石墨烯光化学修饰及尺寸效应研究[A];2011中国材料研讨会论文摘要集[C];2011年
相关重要报纸文章 前10条
1 姚耀;石墨烯研究取得系列进展[N];中国化工报;2009年
2 刘霞;韩用石墨烯制造出柔性透明触摸屏[N];科技日报;2010年
3 记者 王艳红;“解密”石墨烯到底有多奇妙[N];新华每日电讯;2010年
4 本报记者 李好宇 张們捷(实习) 特约记者 李季;石墨烯未来应用的十大猜想[N];电脑报;2010年
5 证券时报记者 向南;石墨烯贵过黄金15倍 生产不易炒作先行[N];证券时报;2010年
6 本报特约撰稿 吴康迪;石墨烯 何以结缘诺贝尔奖[N];计算机世界;2010年
7 记者 谢荣 通讯员 夏永祥 陈海泉 张光杰;石墨烯在泰实现产业化[N];泰州日报;2010年
8 本报记者 纪爱玲;石墨烯:市场未启 炒作先行[N];中国高新技术产业导报;2011年
9 周科竞;再说石墨烯的是与非[N];北京商报;2011年
10 王小龙;新型石墨烯材料薄如纸硬如钢[N];科技日报;2011年
相关博士学位论文 前10条
1 吕敏;双层石墨烯的电和磁响应[D];中国科学技术大学;2011年
2 罗大超;化学修饰石墨烯的分离与评价[D];北京化工大学;2011年
3 唐秀之;氧化石墨烯表面功能化修饰[D];北京化工大学;2012年
4 王崇;石墨烯中缺陷修复机理的理论研究[D];吉林大学;2013年
5 盛凯旋;石墨烯组装体的制备及其电化学应用研究[D];清华大学;2013年
6 姜丽丽;石墨烯及其复合薄膜在电极材料中的研究[D];西南交通大学;2015年
7 姚成立;多级结构石墨烯/无机非金属复合材料的仿生合成及机理研究[D];安徽大学;2015年
8 伊丁;石墨烯吸附与自旋极化的第一性原理研究[D];山东大学;2015年
9 梁巍;基于石墨烯的氧还原电催化剂的理论计算研究[D];武汉大学;2014年
10 王义;石墨烯的模板导向制备及在电化学储能和肿瘤靶向诊疗方面的应用[D];复旦大学;2014年
相关硕士学位论文 前10条
1 詹晓伟;碳化硅外延石墨烯以及分子动力学模拟研究[D];西安电子科技大学;2011年
2 王晨;石墨烯的微观结构及其对电化学性能的影响[D];北京化工大学;2011年
3 苗伟;石墨烯制备及其缺陷研究[D];西北大学;2011年
4 蔡宇凯;一种新型结构的石墨烯纳米器件的研究[D];南京邮电大学;2012年
5 金丽玲;功能化石墨烯的酶学效应研究[D];苏州大学;2012年
6 黄凌燕;石墨烯拉伸性能与尺度效应的研究[D];华南理工大学;2012年
7 刘汝盟;石墨烯热振动分析[D];南京航空航天大学;2012年
8 雷军;碳化硅上石墨烯的制备与表征[D];西安电子科技大学;2012年
9 于金海;石墨烯的非共价功能化修饰及载药系统研究[D];青岛科技大学;2012年
10 李晶;高分散性石墨烯的制备[D];上海交通大学;2013年
,本文编号:2140345
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2140345.html