当前位置:主页 > 硕博论文 > 工程博士论文 >

新型功能化离子液体的结构设计及其在调控酸性气体捕集的研究

发布时间:2018-07-26 11:47
【摘要】:人们已经意识到,如果不采取任何行动来应对全球气候变化的话,一场毁灭性的灾难迟早会来临。众所周知,二氧化碳(CO2)排放是引起全球变暖、海平面上升以及更为严峻的气候问题的主要元凶。实际上,空气中人为CO2浓度已经积累到了前所未有的水平(约为400 ppm),这主要是由于化石燃料的不断消耗引起的。因此,非常有必要发展高效的CO2捕集和储存技术来缓和当前的CO2危机。在这一点上,离子液体凭借其极低的蒸汽压、良好的热稳定性、不可燃性、宽的液程、几乎无限的调节性、优越的CO2亲和性等优势,有望成为最为先进的CO2捕集技术之一。在这篇论文中,我主要集中在新型功能化离子液体的设计合成和CO2吸收性能的调控。在第一部分中,我们将π电子共轭结构引入到离子液体阴离子中,可实现可逆的CO2捕集,这主要源自于动态共价碳氧单键的形成。π电子共轭阴离子可以双重调控CO2的吸收性能,即同时增强CO2的容量和改善CO2的脱附。改善的脱附性能是由于π电子共轭结构的电荷分散引起的;增强的吸收容量可能是由于阴离子的聚集效应协同增强所生成的动态碳氧单键。吸收实验、谱学研究、理论计算和热重分析都支持了这种双重调控作用。不含氘代溶剂的核磁碳谱技术(No-DNMR)显示,化学吸收的CO2峰明显增强,提供了一种有效的原位技术来确定离子液体和CO2的相互作用机理。这些离子液体热稳定性高、吸收容量大、CO2脱附性能强,显示出动态共价键在消除CO2危机中扮演了重要角色。在第二部分中,我们设计一系列氨基功能化吡啶型离子液体,通过CO2吸收过程中的分子内质子转移来改善CO2的吸收性能。我们的策略是引入一个碱性基团(去质子化的羟基)作为质子受体来阻止CO2吸收过程中氨基之间的分子间质子转移,从而可实现增强的CO2吸收容量和可控的粘度变化。我们知道,通常所报道的氨基功能化离子液体在CO2吸收过程中往往伴随着粘度的剧烈增加。与之相反的是,也是非常重要的一点,[P66614][2-NH2-3-O-Py]吸收CO2后,体系的粘度下降约40%,表明是一个自身加速的吸收过程。吸收实验结果同时显示,这些氨基功能化离子液体表现出强劲的、快速的、耐水的、以及可逆的CO2吸收。在第三部分中,我们构筑了新型的光响应阴离子功能化离子液体,分别将偶氮苯基接在季擕盐阳离子上和以1,2,4-三氮唑作为阴离子。与之前的光响应离子液体不同,我们利用离子交换的方法首次将功能化阴离子(1,2,4-三氮唑)引入到光响应离子液体中,并且可以通过下面两种途径获得纯的顺式离子液体。一种方法是将离子液体溶于四氢呋喃(THF)溶剂中,经过紫外光照射后,去除低沸点的THF溶剂即可。另一种方法是将离子液体制成薄膜,用紫外光照射即可。用紫外光和蓝光交替照射离子液体的溶液和薄膜都可以实现离子液体的顺反可逆互变。下一步的工作在于考察顺反异构效应是否对离子液体的CO2吸收有影响。在第四部分中,我们首次报道了SO2气体能诱导偶氮苯基型离子液体实现顺式到反式构型的翻转。而氮气(N2)和CO2却几乎不能。核磁氢谱(NMR)、紫外可见光谱(UV-vis)和红外光谱(FT-IR)都证实了吸收SO2后顺式偶氮苯基型离子液体的构型能完全从顺式向反式发生翻转。设计逻辑实验,并进行核磁分析可知,高吸收容量的SO2物理溶解是引起顺式偶氮苯基型离子液体的最主要原因。由光异构化速率常数可知,相对于没有吸收SO2的离子液体稀溶液而言,[P66614][azo-COO]-SO2稀溶液的光异构化过程受到极大的抑制。这个工作取得的结果也许对构建新型的刺激响应型材料在气体传感器上的研究有所帮助。总之,我们期望新概念和策略的出现和引入,给离子液体的CO2捕集带来新的活力。我们也期望在解决科学问题的过程中能收获新的发现。我需要谨记一点的是,"要善于打破思维定势,建立跨学科的思维模式,因为这样往往有助于获得一些原创性的新发现。"
[Abstract]:People have realized that if no action is taken to cope with global climate change, a devastating disaster will come sooner or later. Carbon dioxide (CO2) emissions are known to be the main cause of global warming, sea level rise and more severe climate problems. In fact, the concentration of CO2 in the air has been accumulated. The unprecedented level (about 400 ppm) is mainly due to the continuous consumption of fossil fuels. Therefore, it is very necessary to develop efficient CO2 capture and storage techniques to mitigate the current CO2 crisis. At this point, ionic liquids have a very low vapor pressure, good thermal stability, unflammability, wide liquid range, almost unlimited. In this paper, I mainly focus on the design and synthesis of new functional ionic liquids and the regulation of the performance of CO2 absorption. In the first part, we introduce the pi electron conjugated structure into the ionic liquid anion in the first part, which can be reversible. The CO2 trap mainly derives from the formation of the single bond of dynamic covalent carbon and oxygen. The pion electron conjugated anion can double control the absorption properties of CO2, that is, to enhance the capacity of CO2 and to improve the desorption of CO2. The improved desorption performance is caused by the charge dispersion of the conjugated structure of the pi electron; the enhanced absorption capacity may be due to the anion. The aggregation effect synergistically enhanced the dynamic carbon oxygen single bond. Absorption experiments, spectroscopic studies, theoretical calculations and thermogravimetric analysis supported this dual regulation. The CO2 peak without deuterium solvent (No-DNMR) showed that the peak of chemical absorption was obviously enhanced, and an effective in-situ technique was provided to determine the ionic liquid and CO2. These ionic liquids have high thermal stability, high absorption capacity and strong CO2 desorption performance, showing that dynamic covalent bonds play an important role in the elimination of the CO2 crisis. In the second part, we designed a series of amino functional pyridine ionic liquids to improve CO2 through the transfer of intramolecular intron in the CO2 absorption process. Our strategy is to introduce an alkaline group (deprotonated hydroxyl) as a proton receptor to prevent the intermolecular proton transfer between amino groups during CO2 absorption, thus achieving enhanced CO2 absorption capacity and controllable viscosity changes. We know that the commonly reported amino functional ionic liquids have been absorbed in CO2. When [P66614][2-NH2-3-O-Py] absorbs CO2, the viscosity of the system decreases by about 40%, indicating that it is a self accelerating absorption process. The results of absorption experiments show that these amino functional ionic liquids show strong, fast, and water resistant. As well as reversible CO2 absorption, in the third part, we constructed a new type of photoresponse anion functionalized ionic liquid, which respectively connected azo phenyl on quaternary ammonium salt and 1,2,4- three azole as anions. Unlike the previous photoresponse ionic liquids, we used the separation method for the first time to function anions (1,2,4 Three azolol is introduced into the light response ionic liquid and can be obtained by two ways to obtain pure CIS ionic liquids. One way is to dissolve the ionic liquid in the tetrahydrofuran (THF) solvent and remove the low boiling point THF solvent after ultraviolet light. The other is to make the ionic liquid film and irradiate with ultraviolet light. In the fourth part, we first report that the SO2 gas can induce the azo phenyl type ionic liquid. In the fourth part, we report that the SO2 gas can induce the azo phenyl type ionic liquid. However, nitrogen (N2) and CO2 are almost impossible. Nuclear magnetic hydrogen spectrum (NMR), ultraviolet visible spectrum (UV-vis) and infrared spectroscopy (FT-IR) all confirm that the configuration of the CIS diazo phenyl ionic liquid can completely turn from cis to trans form after absorption of SO2. The physical dissolution of the SO2 capacity is the main cause of the CIS type azo phenyl ionic liquid. It is known from the rate constant of the photoisomerization that the photoisomerization process of the [P66614][azo-COO]-SO2 dilute solution is greatly suppressed relative to the dilute solution of the ionic liquid without absorption of SO2. In short, we expect the emergence and introduction of new concepts and strategies to bring new vitality to the CO2 capture of ionic liquids. We also expect to reap new discoveries in the process of solving scientific problems. Interdisciplinary thinking mode, because this often helps to get some original new discoveries. "
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O645.1

【相似文献】

相关期刊论文 前10条

1 马贺;郭连权;王帅;韩东;宋开颜;武鹤楠;;扶手椅型单壁碳纳米管π电子能带及其曲线计算[J];沈阳工业大学学报;2009年04期

2 赵洪刚,王寅,胡式贤,姜萍,何鸿斌,曹阳;分子轨道图形理论的应用——估算E_π的分点法[J];科学通报;1995年17期

3 杨丽,任爱民,封继康,刘孝娟,周新;含三种不同π电子中心的几种双光子吸收材料的理论研究[J];高等学校化学学报;2004年03期

4 华文玉,高培志;聚乙炔嘧啶长链分子的π电子能谱研究[J];南京理工大学学报(自然科学版);1985年04期

5 赵洪刚,杨开海,,王长生,张继才,曹阳;分子轨道图形理论的应用(Ⅲ)──估算E_π的断键法[J];高等学校化学学报;1995年02期

6 刘晓静;席海涛;孙小强;;氨基富π电子醚链的合成与超分子性能研究[J];化学通报;2012年04期

7 谢增鸿;苯基荧光酮各种存在形式的π电子云分布[J];福州大学学报(自然科学版);1997年02期

8 刘路永;;运用激发态时,π电子成对运动观点对马氏加成规则的理论解释[J];漳州职业技术学院学报;2006年03期

9 赵存元,游效曾;D-A共轭π电子化合物非线性光学性质的分子设计研究[J];西北师范大学学报(自然科学版);1997年02期

10 马艳平;包鹏;虞忠衡;;DFT能量分解和氮苄叉基苯胺分子π电子离域能的研究[J];高等学校化学学报;2006年08期

相关会议论文 前1条

1 王敬中;周达明;丁大同;赵永记;李赫T

本文编号:2145911


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2145911.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f7f00***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com