钛基体增强掺硼金刚石电极电催化过程动力学研究
[Abstract]:Organic pollutants in water environment are directly related to human health and have a vital relationship with social development. It has become an urgent requirement for water environmental protection to remove the difficult degradation of organic pollutants in water bodies. The electrocatalytic oxidation technology produces strong oxidizing active substances from the electrode surface electrochemistry as the direct or indirect oxygen. Organic compounds are widely used by environmentalists in the field of organic matter removal. Boron doped diamond (BDD) electrode is considered as the most ideal and efficient electrode material in the field of electrocatalytic oxidation. The mechanism and kinetics enhancement mechanism of the specific organic electrocatalytic oxidation process need further study. This paper uses BDD electrode to electrocatalysis organic pollution. On the basis of the dye, focusing on the construction of high efficiency BDD electrode and the mineralization process of organic pollutants, the mechanism of electrocatalytic oxidation of organic pollutants by BDD electrode, the relationship between the degradation process and the titanium matrix structure and electrocatalysis are explored. At the same time, the electro catalytic mechanism and the kinetic process of the electrode / solution interface are designed to enhance the electrical stimulation. The concrete main research results are as follows: (1) based on the purpose of improving the electrocatalytic activity of BDD electrode, a three-dimensional porous titanium based boron doped diamond (3D-Ti/BDD) film was prepared on porous titanium substrate by hot wire chemical vapor deposition. The SEM, XRD and Raman tests showed that the porous Ti/BDD film was preserved. On the premise of maintaining the high oxygen evolution potential of the BDD electrode, the matrix structure from the change of two-dimensional to porous titanium makes the thin film three-dimensional porous structure, increases the surface area of the BDD film electrode, and the effective electrochemical area of the porous titanium /BDD electrode is 2.62 from the two-dimensional BDD electrode, on the premise of maintaining the high oxygen evolution potential of the BDD electrode. Cm2 cm-2 increases to 8.37 cm2cm-2; cyclic voltammetry and electrochemical impedance tests indicate that porous titanium BDD has higher electrocatalytic activity and faster charge transfer rate for potassium ferricyanide redox, and the operation parameters of the charge transfer resistance from 128.3 Omega cm2 to 31.3 Omega cm2. and the BDD film deposition process are also important. The surface morphology and quality of BDD grains are directly affected by the influence of carbon source concentration, boron doping concentration and reactor pressure on the nucleation and growth rate of the diamond particles in the deposition process. The controllable preparation of micrometer and nanoscale porous BDD films can be achieved through the control of operating parameters. (2) the degradation of anti-inflammatory drugs on the three-dimensional BDD electrode Study of process and dynamics. Anti inflammatory drugs have become a new organic pollutant in the current water environment. The degradation process and kinetics of paracetamol on the BDD electrode are studied. Paracetamol appears obvious oxidation peak near the 0.90v of cyclic voltammetry curve. It is proved that paracetamol is on the BDD electrode. There is an electron transfer reaction in the electrocatalysis process, and the response current at the corresponding potential has a good linear relationship with the concentration of organic matter. The degradation process of organic matter under different current density shows that the current increase in the electrocatalytic process of organic matter increases with the increase of current density, accelerating the overall mineralization of acetaminophen. However, the high current density also aggravates the oxidation side reaction of the electrode surface, resulting in the gradual decrease of the current efficiency. The degradation kinetics of acetaminophen on the BDD electrode conforms to the quasi first order reaction kinetics, and the apparent rate constant on the two-dimensional and porous BDD electrode has a larger comparison table for the 0.208,0.344h-1. porous BDD electrode, respectively. The area provides more reactive sites for the direct electron transfer of paracetamol on the BDD electrode, promoting the electroformation of the strongly oxidized active hydroxyl radical in the process of indirect electrocatalytic oxidation acetaminophen, and eventually showing a faster electrochemical reaction kinetic rate. The mechanism and degradation pathway on the BDD electrode are proposed. (3) the electrocatalytic mineralization of hydroquinone on different electrode materials shows that the electrocatalytic oxidation activity of the electrode has an important relation with the electrode oxygen evolution potential and the surface generation of hydroxyl radical. The substituent phenols of different substituent groups are in the BD The electrochemical degradation experiments on the D electrode show that the activity of the electrocatalytic reaction is restricted by the electronic effect of the substituent functional group itself. The substituent is separated from the benzene ring in the mineralization process and becomes the quick step of the whole electrocatalytic reaction process, and the electrocatalytic reaction rate is approximately linear with the Hammett constant of the substituent group, which has an approximate linear relationship with the electrocatalytic oxygen (.Bdd). The mechanism mainly produces the strong oxidation active hydroxyl radical as the medium, and the existence of porous structure of porous BDD electrode makes the amount of hydroxyl radical produced on the surface of the porous BDD electrode is about 2.7 times that of the two-dimensional electrode, and the step current of the porous BDD electrode is 2 times that of the two dimensional electrode for different kinds of organic matter, showing a higher indirect electrical stimulation. The degradation of different kinds of organic compounds by electrocatalytic oxidation shows that the porous BDD electrode can achieve faster removal rate and current efficiency. However, the irregular pore structure inside the porous electrode leads to the difficulty in the mass transfer process of organic matter in the porous electrode, which is a limiting step for the whole degradation process and causes much more. The utilization rate of hydroxyl radical of hole electrode is only 50~60%, which weakens the advantage of high catalytic oxidation ability of porous BDD electrode. (4) to further design the three dimension network BDD electrode for enhancing the mass transfer process of electrode / solution interface for the problem of the internal mass transfer in the porous electrode hole. A three-dimensional network BDD electrode with surface microstructures is prepared. The electrode microstructural surface provides more active sites for the electrocatalytic oxidation reaction, and the effective electrochemical surface area is 1.6 times as high as that of the two-dimensional BDD electrode. Due to the enhancement of surface area and the natural network structure, the three-dimensional network BDD electrode redox to the solution of the solution of the potassium ferricyanide Higher electrocatalytic activity and lower mass transfer resistance were shown in the related electrochemical tests, and the enhancement of surface hydrophobicity made the hydroxyl radicals produced on the surface of the electrode more easily detached from the surface of the electrode to enter the bulk solution and the organic matter to be electrochemical oxidation, and increased the efficiency of the hydroxyl radical. The mass transfer process of organics on the electrode surface makes the organic matter have a faster mass transfer coefficient on the surface of the electrode and weakens the restriction of the mass transfer process control. The above factors make the three-dimensional network BDD electrode show a faster removal rate and dynamic process in the mineralizing experiment of different kinds of organic matter. In addition, the three-dimensional network is used. The complex titanium matrix can also be extended to other network titanium and active coatings for water treatment. The obtained network PbO2 electrode shows excellent electrocatalytic oxidation performance compared to the BDD electrode, and the applicability and efficiency of this kind of network electrode have been verified.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O646.5;O643.3
【相似文献】
相关期刊论文 前10条
1 ;散热新方向:铜-金刚石复合材料[J];超硬材料工程;2009年02期
2 梁中翥;梁静秋;郑娜;贾晓鹏;李桂菊;;掺氮金刚石的光学吸收与氮杂质含量的分析研究[J];物理学报;2009年11期
3 宋月清;夏扬;谢元锋;林晨光;郭志猛;曲选辉;;金刚石热管理材料的研究进展[J];超硬材料工程;2010年01期
4 李蒙顺;;金刚石的光学分恱[J];重型机械;1963年04期
5 王至炎;金刚石的光学选矿[J];建筑材料工业;1963年05期
6 李继业;;金刚石浮选的理论分析[J];非金属矿;1980年01期
7 陈昭威;提高烧结多晶金刚石质量的途径[J];人工晶体;1982年01期
8 ;电解回收金刚石的小结[J];青海地质;1978年02期
9 陈小安,王序进;浅谈金刚石修整工具及其制造方法[J];磨料磨具与磨削;1986年06期
10 林增栋;金刚石表面的金属化[J];磨料磨具与磨削;1987年02期
相关会议论文 前10条
1 刘志杰;张卫;万永中;王季陶;;氧原子在化学气相淀积金刚石过程中的作用[A];第三届中国功能材料及其应用学术会议论文集[C];1998年
2 廖道达;陆德强;刘文燕;邱君苑;;金刚石锦上添花[A];2005年中国机械工程学会年会第11届全国特种加工学术会议专辑[C];2005年
3 郑云龙;杨志军;曾祥清;艾群;彭明生;;金刚石典型表面形貌的形成与环境意义[A];2012年全国矿物科学与工程学术研讨会论文集[C];2012年
4 王超;揭晓华;徐江;陶洪亮;魏菊;;双阴极等离子溅射金刚石显微结构研究[A];2013广东材料发展论坛——战略性新兴产业发展与新材料科技创新研讨会论文摘要集[C];2013年
5 郭宗山;;金刚石的成因与找矿[A];中国地质科学院矿床地质研究所文集(19)[C];1987年
6 乔培新;龙伟民;钟素娟;李胜利;;预合金粉末与金刚石的扩散连接[A];第十一次全国焊接会议论文集(第1册)[C];2005年
7 廖道达;陆德强;刘文燕;邱君苑;;金刚石锦上添花[A];2005年中国机械工程学会年会论文集第11届全国特种加工学术会议专辑[C];2005年
8 刘鹏;谢水生;李木森;郝兆印;程开甲;;新型碳源高温高压合成及外延金刚石[A];中国有色金属学会合金加工学术委员会2008学术年会论文集[C];2008年
9 杨志军;彭明生;蒙宇飞;苑执中;张恩;;铁基合金-氢预处理石墨系高温高压合成金刚石的研究及其意义[A];中国矿物岩石地球化学学会第十届学术年会论文集[C];2005年
10 廖源;沈维康;王冠中;余庆选;马玉蓉;方容川;;掺氮气氛下CVD金刚石的场致发射特性研究[A];第九届全国发光学术会议摘要集[C];2001年
相关博士学位论文 前10条
1 王珊珊;金刚石薄膜电极的制备及其在铝电解中的应用研究[D];大连理工大学;2014年
2 赵阳;掺硼金刚石电极对废水毒性控制和污染物检测性能评价[D];大连理工大学;2015年
3 邹莱;黑色金属金刚石切削刀具磨损及其抑制的研究[D];哈尔滨工业大学;2015年
4 许蓬子;金刚石材料逆向磨损去除加工的研究[D];吉林大学;2016年
5 刘岩;基干金刚石色心的单光子产生及其荧光动力学研究[D];华东师范大学;2016年
6 崔巍;熔渗法制备金刚石/铜复合材料及其性能[D];北京科技大学;2016年
7 王俊峰;金刚石NV色心的制备、相干性与温度探测研究[D];中国科学技术大学;2016年
8 胡强;生长型金刚石聚晶的高温高压合成及其机理研究[D];吉林大学;2016年
9 李浩;硼掺杂金刚石薄膜电极的制备及其在密闭空间废水处理回用中的应用[D];浙江大学;2016年
10 贾乾忠;聚晶金刚石刀具关键制作工艺及机理研究[D];大连理工大学;2015年
相关硕士学位论文 前10条
1 袁婷;华北地台和扬子地台金刚石生长过程的差异性及意义[D];中国地质大学;2009年
2 刘向红;n型掺杂金刚石的第一性原理研究[D];山东大学;2011年
3 卫陈龙;金刚石表面金属化及金刚石/铜复合材料微波烧结工艺研究[D];昆明理工大学;2015年
4 吴东;高精度金刚石玻氏压头的设计方法及其机械研磨技术研究[D];哈尔滨工业大学;2015年
5 李姝贤;金刚石表面处理对金刚石/铝复合材料组织性能的影响[D];北京有色金属研究总院;2015年
6 林佳志;摩擦化学抛光单晶金刚石的工艺研究[D];大连理工大学;2015年
7 龙涛;热管理用金刚石/铜复合材料的界面构建及其组织与热导率研究[D];南昌航空大学;2014年
8 王松瑞;磁场作用对化学复合镀Ni-P-金刚石影响机理研究[D];青岛科技大学;2015年
9 漆书桂;多层钎焊金刚石钻头的实验研究[D];中国地质大学(北京);2012年
10 周爽;钎焊金刚石钻头微观组织分析与钻进温度场仿真[D];中国地质大学(北京);2013年
,本文编号:2149766
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2149766.html