地下水污染源解析的贝叶斯监测设计与参数反演方法
[Abstract]:Groundwater is one of the most important drinking water sources for human beings. However, human activities often cause the groundwater system to be polluted by various pollutants. In order to better manage the groundwater and evaluate the environmental risk of groundwater pollution, we need to use numerical simulation to determine the direction of the pollutant. The key parameters of the groundwater solute transport model, such as the location of the pollution source, the intensity of the pollution source, the permeability coefficient of the aquifer and so on, are often difficult to be obtained directly. It is necessary to obtain the observation data based on the monitoring well to obtain the estimation of it by solving the inverse problem. How to do the optimal design of the monitoring well network It is a hot spot for groundwater hydrology to provide the most valuable observation values, and thus accurately estimate the parameters of the model. In addition, the monitoring design and parameter inversion often require tens of thousands of model calls, which will cause extremely high calculation costs in large scale problems. The source identification of water pollutant migration is the research goal, and the Bayesian uncertainty analysis method based on the alternative system is developed to carry out efficient, accurate monitoring design and parameter inversion. (1) in order to maximize the value of the observed data, we carry out the expectation of the prior to the posterior relative entropy to the objective function. The optimal design of the monitoring well network, in which the maximum sampling position of the target function is the optimal sampling scheme, we use the Markoff Montecalo (Markov chain Monte Carlo, MCMC) method to inverse the unknown model parameters after using the optimal sampling scheme. In order to improve the computational efficiency, we use the self We adapt to the sparse lattice interpolation (adaptivesparsegridinterpolation) method to construct a polynomial substitution system in the prior space of parameters, and apply it to the monitoring design and parameter inversion. It avoids the repeated solution of the original model, that is the control square of the groundwater flow and solute transport. In order to eliminate the error caused by the alternative system, we adopt the method. A two stage MCMC simulation is used to invert the unknown parameters, that is, an alternative system is used to fully explore the posterior distribution of the parameters, and then the original model is used to accurately sample the parameter posterior. The numerical example shows that the method proposed by us can identify the pollution effectively and accurately under the condition of permeability coefficient heterogeneity. Source parameters and osmotic coefficient parameters. (2) in the second stage of the two phase MCMC simulation, we still need to solve the original model many times, so the amount of computation required for the two phase MCMC simulation is still high. In order to further reduce the computational cost, we propose the idea of constructing the alternative system adaptively in the parameter posterior space. Here, I We use the Gauss process (Gaussianprocess, GP) to construct an alternative system, and combine the MCMC simulation with the substitutes in the inversion of the parameters, and increase the accuracy of the alternative system in the parametric posterior space by self adaptively increasing the base point near the posterior. In addition, we are able to quantify the substitution line due to the excellent properties of the GP. The error of the system is reflected in the posterior distribution of the parameters. The results of the numerical simulation show that the process based on the posterior substitution system is more efficient and accurate than the process based on the prior alternative system. (3) in the high dimensional problem, the construction of the alternative system and the effect of the MCMC inversion are not good. And the problem of parameter inversion, we propose a method based on the set (ensemble). We use the data value analysis (data-worth analysis) to find the maximum information sampling scheme, and then use the set smoother (ensemble smoother, ES) to retrieve the model parameters. In order to verify the effect of the method, we tested one of the methods. In this case, we consider 8 unknown pollution source parameters and 3321 unknown osmotic coefficient parameters in this example. Through the design of 12 monitoring time steps, we obtain 24 optimal sampling positions. We can use the 3329 unknown parameters by using the concentration and water head observed on the 24 optimal sampling locations. (4) (4) although the ES algorithm is suitable for the high dimensional case, it is based on the linear estimation theory, and can not solve the inverse problem of multi peak in the parameter distribution. In order to solve the problem of parameter inversion in the case of high dimensional non Gauss, we propose a kind of iterative local updating ensemble smoother called iterative local update set smoothing. In the process of implementing this algorithm, we do not update each sample in the set directly, instead, we update the local sample set of each sample to fully explore the possible multi peak distribution. In addition, in the nonlinear problem, in order to improve the inversion effect, we use one kind in the ILUES algorithm. In simple iterative process,.ILUES algorithm can identify the multi peak distribution of parameters without clustering analysis. In order to verify the effect of the ILUES algorithm, we tested five numerical examples, taking into account the different peaks of the parameters, the posterior multi peak and the high dimension of the parameters respectively. These examples all show the ILUES well. The effect of the algorithm in the parameter inversion of the complex model. Compared with the common MCMC algorithm, the ILUES algorithm has the significant advantage of the computational complexity. (5) because the structure of the replacement system is very inefficient in the high dimensional problem, it greatly limits the application scope of the alternative system. In order to solve this problem, we propose a construction of the substitutes for the substitutes and the substitutes. The idea of combining it and applying it to the assessment and analysis of the risk of groundwater pollution. When estimating the failure probability (i.e. the probability of exceeding the risk value), the direct Monte Carlo (MonteCarlo, MC) simulation usually requires a large number of system models. In order to reduce the cost of the failure probability analysis, people often make the MC simulation Using alternative systems. However, it is very difficult to construct a substituting system directly for the high dimensional groundwater model. Moreover, the use of the alternative system will inevitably introduce errors. In order to solve the above problems, we have proposed a two stage MC simulation method to accurately and effectively carry out the failure probability analysis. In the first stage, we combine the Karhunen-Loe The ve expansion and the piecewise inverse regression (sliced inverseregression) method can fully reduce the parameters of the permeability coefficient of spatial heterogeneity, and on this basis, a more accurate replacement system is constructed by using the chaotic polynomial expansion (polynomial chaos expansion). By using this alternative system, we can effectively calculate the attention of a large number of samples. (quantity of interest, QoI); in the second stage, in order to eliminate the error introduced by the alternative system, we recalculated the QoI value of the samples near the failure boundary with the original model. In this way, we can eliminate the error introduced by the alternative system and get the accurate estimation of the failure probability. In order to verify the effect of the above method, we apply it In the example of a high dimensional groundwater pollutant migration simulation, and the amount of total pollutants flowing downstream as a result of QoI., the two stage MC simulation can be calculated at a cost of less than 1%, and the result is completely consistent with the simulation based on the original model.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:X523;X832
【相似文献】
相关期刊论文 前10条
1 陈琳珏;电磁波三参数反演方法[J];黑龙江大学自然科学学报;1999年02期
2 韩伟;李道伦;卢德唐;陈锋;;利用改进差分进化算法的油田地层参数反演[J];电子技术;2008年08期
3 罗省贤,李录明;生物遗传算法在速度参数反演中的应用[J];物探化探计算技术;1995年03期
4 田明俊,周晶;岩土工程参数反演的一种新方法[J];岩石力学与工程学报;2005年09期
5 郝前勇;印兴耀;张繁昌;王保丽;;基于地震数据的岩石弹性参数反演方法[J];中国石油大学学报(自然科学版);2012年05期
6 薛强;刘勇;刘建军;王惠芸;;非饱和土水特征曲线模型参数反演辨识研究[J];仪器仪表学报;2006年S1期
7 袁井菊;贾庆素;施少武;;大情字井地区特征参数反演储层预测[J];断块油气田;2010年04期
8 林玎;刘伟;郭华;;一维弹性波方程双参数反演的省去Green函数法[J];数学的实践与认识;2013年18期
9 张中庆,张庚骥;阵列型感应测井的多参数反演[J];测井技术;1998年05期
10 仟佰;地震波参数反演与应用技术[J];石油地球物理勘探;1999年01期
相关会议论文 前10条
1 邱海宾;杨坤德;;不同接收阵形时匹配场地声参数反演性能研究[A];中国声学学会2009年青年学术会议[CYCA’09]论文集[C];2009年
2 彭放;徐忠祥;;倾斜断裂参数反演的规范特征点差比法[A];1998年中国地球物理学会第十四届学术年会论文集[C];1998年
3 马黎黎;王仁乾;;声源深度与垂直阵倾角对海底参数反演的影响[A];2009年全国水声学学术交流暨水声学分会换届改选会议论文集[C];2009年
4 秦海旭;吴国忱;;裂隙参数反演方法研究[A];中国地球物理2013——第二十专题论文集[C];2013年
5 商德江;张仁和;;新型宽带爆炸声源及海底参数反演[A];中国声学学会2003年青年学术会议[CYCA'03]论文集[C];2003年
6 刘韬;陈天胜;魏修成;刘春园;季玉新;;射线参数域弹性参数反演[A];中国地球物理2013——第十九专题论文集[C];2013年
7 赵梅;胡长青;屈科;;海水声速对海底单参数反演的影响[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年
8 笪良龙;丁风雷;于泳海;;基于方位-能量信息的海底参数反演方法研究[A];2005年全国水声学学术会议论文集[C];2005年
9 李整林;张德明;张仁和;;浅海脉冲声传播与海底参数反演[A];中国声学学会2005年青年学术会议[CYCA'05]论文集[C];2005年
10 张让;张文生;谢靖;;地球物理多参数反演中的正则化参数优选问题[A];1991年中国地球物理学会第七届学术年会论文集[C];1991年
相关重要报纸文章 前1条
1 通讯员 陈英英;卫星去参数反演系统有效识别人影作业潜力区[N];中国气象报;2010年
相关博士学位论文 前10条
1 卢红喜;极化干涉合成孔径雷达与层析成像技术研究[D];西安电子科技大学;2014年
2 张江江;地下水污染源解析的贝叶斯监测设计与参数反演方法[D];浙江大学;2017年
3 刘杰;裂隙岩体渗流场及其与应力场耦合的参数反问题研究[D];河海大学;2002年
4 胡丽琴;云的水平非均匀性对云特性参数反演结果的影响[D];中国气象科学研究院;2005年
5 陈建江;AVO三参数反演方法研究[D];中国石油大学;2007年
6 郭永刚;海底声参数反演研究与应用[D];中国海洋大学;2004年
7 王建花;叠前弹性参数反演新方法[D];中国海洋大学;2006年
8 俞元杰;偏微分方程参数反演问题的算法与分析[D];浙江大学;2015年
9 任群言;利用舰船噪声的海底地声参数反演研究[D];哈尔滨工程大学;2013年
10 肖艳芳;植被理化参数反演的尺度效应与敏感性分析[D];首都师范大学;2013年
相关硕士学位论文 前10条
1 朱友谊;基于监测数据和参数反演的滑坡动态设计与施工[D];西南交通大学;2015年
2 邱成虎;基于围岩参数反演的隧道稳定性研究[D];西南交通大学;2015年
3 吴松波;联合永久散射体雷达干涉和像素偏移估计方法提取火山形变及参数反演[D];西南交通大学;2015年
4 陈安猛;基于SAR图像地表参数反演的山火预警方法研究[D];电子科技大学;2015年
5 焦友军;地下水有机污染反应运移模拟参数反演评价[D];南京大学;2015年
6 王君毅;水稻微波遥感信息提取与参数反演系统设计与实现[D];华东师范大学;2016年
7 李海燕;震源位错模型参数反演方法研究[D];东华理工大学;2016年
8 潘孝刚;声场—动力环境耦合反演方法研究[D];浙江大学;2016年
9 金利洪;磁源参数反演技术实用研究[D];中国地质大学(北京);2006年
10 张冬冬;混凝土重力坝材料参数反演方法研究[D];大连理工大学;2014年
,本文编号:2155717
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2155717.html