黑曲霉高产柠檬酸机制及代谢调控研究
[Abstract]:Citric acid, as the most productive organic acid, is widely used in food, medicine, detergent, cosmetics and other fields. At present, citric acid is mainly produced by Aspergillus Niger deep aerobic fermentation. The yield and conversion rate have reached a higher level. However, according to the Alvarez-Vasquez model, there is still room for improvement, and citric acid should be further strengthened. The production of Aspergillus Niger requires exploring the mechanism of high citric acid production at the genome and transcriptome levels to guide metabolic regulation. In addition, citric acid producing strains undergo multiple rounds of mutagenesis to form short thick mycelia with thickened cell walls, difficult genetic transformation and lack of powerful metabolic control tools. Therefore, it is necessary to study the transformation of citric acid producing strains. METHODS AND METABOLISM REGULATING ELEMENTS.A genetic transformation method was established for Aspergillus Niger citric acid producing strain H915-1. Taking H915-1 and its mutants as research objects, the mechanism of citric acid production by Aspergillus niger was explored by comparative genomics and transcriptome, and the promoter Pgas induced by low pH was found to be a dynamic regulator. The main results are as follows: (1) The protoplast formation conditions of Aspergillus Niger H915-1 were optimized and a genetic transformation system was established. The optimal ratio of enzymatic hydrolysate was 5 mg (-1) lysozyme, 0.2 U (-1) chitinase and 460 U 65507 (-1) glucuronidase; optimized conditions for protoplast preparation: osmotic stabilizer 0.7 M KCl, cell mass 15 mg, enzymatic hydrolysis temperature 37 In the case of NHEJ gene Ku-70, the 2.3 KB homologous arm was used to knock out oah, and the probability of homologous integration was 65%. Oxalic acid was not synthesized in the whole fermentation process. (2) Two low-yield strains A1 and L2 were obtained by plasma mutation and high throughput screening with Aspergillus Niger H915-1 as the starting strain. Citric acid production decreased from 157 g (-1) to 117 g (-1) and 76 g (-1), respectively. Genome sequencing, splicing and annotation were performed on the production strain and mutant strains A1 and L2. Their genome sizes were 35.98 Mb, 34.64 Mb and 36.45 Mb, respectively. A total of 59 gene families were found to be different and single nucleotide polymorphisms (SNPs) were detected. Polymorphism, SNP, and insertion-deletion (INDEL) loci were 1210, and structural variation (SV) 52, involving 35 genes. Cis-aconitase and gamma-aminobutyric acid (GABA) pathways in the central metabolic pathway were mutated in succinic hemialdehyde dehydrogenase genes. The transcriptome data of 15-1 were analyzed at four time points during citric acid synthesis and at the growth stage of the bacteria, and 479 genes were found to have changed. The main genes in the central metabolic pathway of Aspergillus niger were identified. The expression of most enzymes in the glycolysis pathway remained unchanged, the expression of triose phosphate isomerase was up-regulated, and pyruvate kinase was down-regulated. The expression of most of the enzymes in the TCA cycle was down-regulated; the expression of the key enzymes in the GABA pathway was up-regulated; the expression of ATP-citrate lyase was up-regulated, which together with the TCA cycle constituted an ineffective ATP-depleting cycle; 35 transporters were identified to be up-regulated continuously, including three organic anion transporters and one monocarboxylate transporter. Transcriptome analysis showed that low-pH-induced gene gas was screened and its promoter was predicted. Promoter expression intensity was verified by reporter gene fluorescent protein (s GFP). Pgas was induced to express s GFP strongly at pH 2.0, and the expression intensity was consistent with that of PgpdA at pH 2.0. The expression of CAD gene endowed Aspergillus Niger H915-1 with the ability to synthesize itaconic acid. The expression of s CAD at 24 h and 108 h increased 2.37 and 3.23 times than that at 8 h, respectively. The yields of itaconic acid reached 4.92 g (-1) and 5 times that of Pgpd A-CAD. The induction ability of Pgas was verified by q-PCR. Two transcription regulators, XP_001388781.2 and XP_001396281, specifically binding to Pgas were identified by DNA pull-down technique. Evm. model. unitig_0. 1770 sequence, which was closely related to Kl HGT1, was obtained by chemical tree analysis and sequence alignment analysis. It was predicted that the protein contained 11 transmembrane regions, N-terminal in the cell membrane and C-terminal in the cell membrane, named ANHGT1. The total glucose consumption time of HGT1 transformer was 12 h less than that of H915-1. The citric acid yield of HGT1 transformer was increased by 14.7%, fermentation time was shortened by 6 h, and the maximum specific acid production rate was increased by 29.5%.
【学位授予单位】:江南大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ921.1
【相似文献】
相关期刊论文 前1条
1 孔宏智;;从基因组到多样性[J];生物多样性;2014年01期
相关会议论文 前3条
1 李秋实;徐江;朱英杰;孙超;宋经元;陈士林;;基于流式细胞术的赤芝基因组大小估测[A];第十一届全国青年药学工作者最新科研成果交流会论文集[C];2012年
2 张琳琳;李莉;许飞;亓海刚;王晓通;张国范;;长牡蛎基因组fosmid文库的构建及分析[A];中国动物学会、中国海洋湖沼学会贝类学会分会第十四次学会研讨会论文摘要汇编[C];2009年
3 陈晓丹;王永;卢军;朱利泉;王小佳;;芸薹属A基因组DNA封阻下的C染色体组核型分析[A];第九届西南三省一市生物化学与分子生物学学术交流会论文集[C];2008年
相关重要报纸文章 前10条
1 宗合;科学家破译木豆基因组将加速育种发展[N];粮油市场报;2011年
2 记者 夏静 通讯员 范敬群;我首个果树基因组序列图谱完成[N];光明日报;2012年
3 铁铮 记者 赵凤华;我科学家绘制出毛白杨基因组序列框架图[N];科技日报;2011年
4 仲亚;灵芝全基因组精细图谱发布[N];中国中医药报;2012年
5 记者 谭大跃 通讯员 王静思 梁艺染;中美科学家合作解码蚂蚁基因组[N];深圳特区报;2010年
6 记者 张聪;我国首发丹参基因组框架图[N];中国中医药报;2010年
7 记者 刘传书;我科学家绘出大熊猫“晶晶”基因组精细图[N];科技日报;2009年
8 记者 谭大跃 通讯员 逄莎莎;白菜全基因组研究成果发表[N];深圳特区报;2011年
9 记者 吴春燕;石斑鱼全基因组序列图谱绘制完成[N];光明日报;2011年
10 宋明辉;广东破解石斑鱼基因图谱[N];中国渔业报;2011年
相关博士学位论文 前10条
1 刘金定;昆虫基因组注释方法改进及两种昆虫基因组分析[D];南京农业大学;2014年
2 程虹;一株海洋细菌Gilvimarinus polysaccharolyticus YN3~T多相分类学研究及六株盐环境来源微生物全基因组生物信息学分析[D];浙江大学;2015年
3 彭婷婷;新嗜热菌Thermoanarobacter sp.YS13基因组序列以及生长和发酵性质的分析[D];华中农业大学;2016年
4 刘玉玲;棉花基于FISH的单染色体图谱及亚基因组和Oligo序列鉴定[D];华中农业大学;2016年
5 殷娴;黑曲霉高产柠檬酸机制及代谢调控研究[D];江南大学;2017年
6 张丽敏;高梁基因组内大片段获得与缺失变异挖掘及其与重要农艺性状的关联分析[D];吉林大学;2013年
7 周正奎;全基因组关联分析和全基因组预测法解析犬髋关节疾病[D];西北农林科技大学;2011年
8 黄金龙;马属基因组和染色体快速进化的研究[D];内蒙古农业大学;2015年
9 曹月青;鉴定不同基因组之间差异序列的新方法研究[D];重庆大学;2005年
10 凌娜;节旋藻/螺旋藻基因组特性初探及硝酸盐转运蛋白基因克隆与序列分析[D];中国海洋大学;2006年
相关硕士学位论文 前10条
1 周峰;黑曲霉AS3.350基因组分析和转录组表达研究[D];华南理工大学;2015年
2 李奎;谷子基因组中近期节段式重复研究[D];昆明理工大学;2015年
3 孙宇辉;YH基因组二倍体的分型及组装[D];华南理工大学;2014年
4 李世杰;结核分枝杆菌基因组重注释研究[D];电子科技大学;2014年
5 白婷婷;“太岁”的生物学特性及部分基因组测量的研究[D];辽宁大学;2011年
6 龙科任;利用基因组重测序鉴定巴克夏猪的人工选择痕迹[D];四川农业大学;2015年
7 杨超;幽门螺杆菌(Helicobacter pylori)比较基因组学分析及基因组减小分子机制的探讨[D];中国海洋大学;2015年
8 李建凯;两株低温噬菌体生物学特性及基因组解析[D];昆明理工大学;2016年
9 李育先;茄科作物基因组的多重序列比对与进化研究[D];华北理工大学;2016年
10 吴晓龙;疱疹病毒目(Herpesvirales)基因组中微卫星序列的比较分析[D];湖南大学;2015年
,本文编号:2179271
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2179271.html