基于芳醚型聚苯并咪唑的高温质子交换膜的制备及性能研究
[Abstract]:In the past few decades, proton exchange membrane fuel cell (PEMFC) as a highly efficient and environmentally friendly electrochemical energy conversion device has attracted wide attention of scientists. In recent years, with the deepening of research, the development of PEMFC which can work in high temperature and low humidity environment has become a research hotspot. High temperature proton exchange membrane fuel cell (HT-PEMFC) operated at 100-200 C has many advantages over membrane fuel cell (100 C). For example, it improves the tolerance of catalyst to CO, improves the efficiency of catalyst and simplifies the water/heat management. Polybenzimidazole (PBI) has excellent mechanical properties and thermal stability. The proton conductivity of PBI itself is very low, only 10-9 m S. cm-1, and it can not be used as an independent solid electrolyte. Phosphoric acid (PA) is a good electrolyte with high thermal stability, it is at 200 C. In the 1990s, Wainright et al. first doped phosphoric acid into PBI to prepare phosphoric acid-doped polybenzimidazole (PA-PBI) proton exchange membranes, which exhibited many excellent performances at high temperatures. This landmark study, as well as many subsequent related studies, led to PA-PBI films one by one. In the past two decades, the most widely studied PBI substrates have been commercialized poly [2,2'-m-(phenylene)-5,5'-dibenzimidazole] (m-PBI). For m-PBI, the strong hydrogen bonding between imidazole groups leads to poor solubility in order to ensure uniformity of the films. PA-PBI films are prepared by PBI with relatively low linear molecular weight (23-40 K Da, corresponding to the intrinsic viscosity of 0.5-1.0 D L.g-1). However, the mechanical properties of the polymer films are relatively poor due to the lower molecular weight, which only allows the PBI films to obtain a lower phosphoric acid doping amount (usually repeated per mole of PBI). The proton conductivity (100 m S cm 1) is low due to the doping of 6-10 moles of phosphoric acid with the unit. Therefore, researchers have adopted a variety of methods to improve the performance of the membrane, including grafting, crosslinking, inorganic doping, sol-gel method and synthesis of new PBI materials. The PA-PBI high-temperature proton exchange membranes still face several key challenges if they are to be commercialized, such as higher proton conductivity, better mechanical properties and more stable phosphoric acid retention capacity. High conductivity PA-PBI films are prepared by phosphoric acid doping of the films. However, high ADL leads to large size swelling, which correspondingly reduces the mechanical strength and durability of the films. PBI membrane materials with good dimensional stability and mechanical stability and high acid retention ability under high ADL or high proton conductivity are the key problems to be solved in the study of PA-PBI high temperature proton exchange membrane. Two kinds of high molecular weight aryl ether PBI (Ph-PBI and ME-PBI) containing flexible ether bonds and asymmetric large-volume side groups (phenyl and methyl phenyl) were synthesized and the corresponding phosphoric acid doped films were prepared. Compared with OPBI films, Ph-PBI and Me-PBI films exhibit different phosphoric acid doping behaviors, higher phosphoric acid doping levels, better dimensional and mechanical stability, higher proton conductivity and better fuel cell performance. Among them, the PA-PBI (Ph-PBI) obtained by phosphoric acid doping of Ph-PBI at 160 C for 72 h has higher proton conductivity and better fuel cell performance. - 72) The proton conductivity of the membrane is 138 m S. cm - 1, the volume swelling is only 188%, and the mechanical strength of the membrane is 9.7 MPa. Ph - 72. The maximum power density of the H2 / O2 fuel cell is 279 m W. cm - 2 without humidification. Based on the Ph - PBI with excellent size and mechanical stability synthesized in the previous part of the work, in order to make progress In the second part of the study, we grafted 2-chloromethylbenzimidazole onto Ph-PBI and prepared a series of polybenzimidazole films with different grafting degrees. The introduction of additional imidazole groups increased the basic groups on the chain of Ph-PBI and increased the ratio of Ph-PBI film to phosphoric acid. When the grafting degree is 20%, the phosphoric acid doping content is 341%, the conductivity of PBI film is 212 m S. cm - 1, and the tensile strength is 6.5 MPa in dry state. In the third part, in order to improve both proton conductivity and mechanical strength of PA-PBI film, we designed and synthesized a novel crosslinking agent 2,2'-bis (chloromethyl) -5,5'-biphenyl containing imidazole group on the basis of Ph-PBI. A series of cross-linked PBI thin films with different crosslinking degrees were prepared. The cross-linked thin films exhibited better size and mechanical stability than the original Ph-PBI films and the grafted thin films in the second part at high phosphoric acid doping levels, resulting in higher proton conductivity and better fuel cell performance. The mechanical strength of the cross-linked membranes is above 10 MPa. When the degree of cross-linking is 30%, the ADL of the cross-linked membranes is 354%, and the conductivity of the cross-linked membranes is 253 m S. cm-1 under anhydrous condition. The maximum power density of the H2/O2 fuel cell is 533 m W. cm-2 under 160 ~C and no humidification condition. In the last part of the study, in order to enhance the protection of PA-PBI membrane to phosphoric acid. The acidic polyhydroxy nano-Si O2 particles were introduced into the crosslinked PBI films prepared in the previous part to prepare inorganic-organic composite proton exchange membranes (Si O2/PBI). The cross-section morphology of the composite films was studied by scanning electron microscopy (SEM). The results showed that the Si O2 particles were uniformly dispersed in the crosslinked PBI films. The phosphoric acid doping level of the SiO 2/PBI composite membrane with 2 wt% SiO 2 content is 350%, and its proton conductivity is 244 m S cm 1 at 200 C and anhydrous condition. The maximum power density of the H2/O 2 fuel cell with this membrane is 497 m W cm 2 at 160 C and without humidification. With the increase of the nano Si 2 content, the acid of the PBI membrane remains. In summary, we have prepared aryl ether PBI films with excellent size and mechanical stability from the point of view of the structure design of PBI matrix. By introducing more imidazole groups and cross-linking membranes, the conductivity and mechanical strength of PBI films have been further improved, and by Inorganic-Organic methods. A series of PA-PBI high temperature proton exchange membranes with excellent comprehensive properties were obtained.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ425.236
【相似文献】
相关期刊论文 前10条
1 崔铮;相艳;张涛;;硫酸交联壳聚糖膜质子传导行为的研究[J];化学学报;2007年17期
2 付彪;刘海燕;张甄;王智强;张中标;;用于质子交换膜的高质子传导率聚合物研究进展[J];精细化工中间体;2013年01期
3 詹文豹;;BaCeO_3氢传感器[J];稀土信息;1992年08期
4 樊孝红;于非;周震涛;;磺化聚醚醚酮/二氧化硅/磷钨酸复合膜的质子传导率与阻醇性[J];合成化学;2007年S1期
5 谭少博;杨庆浩;张志成;;P(VDF-co-TrFE-co-CTFE)-g-SPS共聚物的合成表征[J];高分子学报;2010年11期
6 漆志刚;宫琛亮;梁宇;李辉;张树江;李彦锋;;中温质子交换膜燃料电池高质子传导率磺化芳香族聚合物膜[J];化学进展;2013年12期
7 马丽;程海龙;徐晶美;王哲;;磺化聚芳醚酮砜/聚芳醚砜VA二唑复合型质子交换膜的制备与性能[J];高等学校化学学报;2014年03期
8 李卫东;徐红;赵炯心;;SPSF/PWA/SiO_2复合质子交换膜的制备与性能[J];东华大学学报(自然科学版);2009年02期
9 王哲;高洪成;赵成吉;常虹;张会轩;那辉;;磺化聚芳醚酮砜/ZrO_2复合型质子交换膜的制备与性能[J];高等学校化学学报;2011年08期
10 张妮;刘惠玲;李君敬;夏至;王向宇;;用于燃料电池的磺化聚芳醚砜质子交换膜材料的直接合成与性能研究[J];高分子学报;2009年04期
相关会议论文 前5条
1 樊孝红;于非;周震涛;;磺化聚醚醚酮/二氧化硅/磷钨酸复合膜的质子传导率与阻醇性[A];第二届中国储能与动力电池及其关键材料学术研讨与技术交流会论文集[C];2007年
2 徐晶美;张会轩;王哲;;用于直接甲醇燃料电池中的磺化聚芳醚酮砜膜的制备与性能研究[A];中国化学会第29届学术年会摘要集——第23分会:电催化与洁净能源电化学转化[C];2014年
3 刘新才;李智亮;张万金;王策;;SPEEK/PAA复合膜材料的制备与电池性能研究[A];中国化学会第27届学术年会第05分会场摘要集[C];2010年
4 樊孝红;于非;周震涛;;磺化聚醚醚酮/二氧化硅/磷钨酸导电复合膜的制备[A];第二届中国储能与动力电池及其关键材料学术研讨与技术交流会论文集[C];2007年
5 孙飞;杨士勇;范琳;;新型含氟磺化聚酰亚胺质子交换膜的合成与性能研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
相关博士学位论文 前7条
1 李贵彬;聚合物电解质膜材料的分子设计及结构与性能的研究[D];吉林大学;2016年
2 李晓白;基于芳醚型聚苯并咪唑的高温质子交换膜的制备及性能研究[D];吉林大学;2017年
3 李明昱;交联型聚合物电解质膜的结构设计与性能研究[D];吉林大学;2015年
4 王双;新型磷酸掺杂交联型聚苯并咪唑高温质子交换膜材料的制备与性能研究[D];吉林大学;2014年
5 唐群;稀土金属有机框架的合成、结构及其性能研究[D];东北师范大学;2014年
6 倪婧;高性能聚合物电解质膜材料的制备和性能研究[D];吉林大学;2012年
7 付铁柱;直接甲醇燃料电池用磺化聚醚醚酮膜材料的制备与研究[D];吉林大学;2009年
相关硕士学位论文 前10条
1 耿青;直接甲醇燃料电池用新型有机无机复合膜的制备与性能研究[D];武汉纺织大学;2015年
2 李真真;新型改性PBI质子交换膜的制备及性能研究[D];大连理工大学;2015年
3 漆志刚;酸碱侧链型芳香族质子交换膜的制备及性能研究[D];兰州大学;2015年
4 韩海兰;新型交联质子交换膜的制备与性能研究[D];长春工业大学;2016年
5 和亚昆;酸碱对增强纳米纤维复合质子交换膜的制备与结构调控[D];郑州大学;2016年
6 张涛;离子液体填充质子交换膜的制备及性能研究[D];郑州大学;2014年
7 陈继威;高温低湿离子液体基聚芳醚质子交换膜的研究[D];大连理工大学;2010年
8 杨华军;聚苯醚基有机无机复合质子交换膜的制备与性能研究[D];暨南大学;2013年
9 李琳;SPPESK/PWA及其表面改性质子交换膜的制备[D];大连理工大学;2013年
10 程康;新型1H-1, 2,3三氮唑类化合物的合成研究[D];郑州大学;2010年
,本文编号:2186322
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2186322.html