大视场高分辨率成像光学系统设计研究
[Abstract]:With the development of optoelectronic imaging technology, in order to obtain the target image information with larger spatial range and more spatial details, optoelectronic imaging system is gradually developing towards the direction of large field of view and high resolution. As a pair of contradictory parameters, it is impossible to improve both the field of view and the resolution of the optical system. Generally speaking, the resolution of the optical system with large field of view is often lower; the field of view of the optical system with high resolution is often smaller. Research hotspots in the field of science. Large-field high-resolution optical systems have wide application prospects in military and civil fields such as space remote sensing, aeronautical reconnaissance, security monitoring, astronomical observation and cultural relics protection. The optical system and the curved Petzval image plane optical system are studied in the following four aspects: 1) The design of off-axis three-mirror optical system is studied. Based on the reflection law and sinusoidal condition, a set of Wassermann-Wolf (W-W) differential equations for solving the initial structure of coaxial three-mirror are derived. An off-axis triaxial optical system with a focal length of 1.2m, a field of view of 18o?4o and an F/4 is designed by using an even aspheric surface. In addition, the main mirror of the system is quadric, the secondary mirror and the three mirrors are non-spherical, and the three mirrors are non-eccentric and inclined, which effectively reduces the manufacturing cost and the difficulty of assembly and adjustment. 2) The design of the off-axis four-mirror system is studied. The vector aberration theory and the node characteristics of each aberration are studied. An objective function consisting of weighted primary aberration coefficients and structural layout constraints is established. The objective function is solved by genetic algorithm and the structural parameters of the coaxial four-mirror optical system are solved. The coaxial four-mirror initial junction with good image quality and special configuration is obtained. An off-axis four-mirror optical system with a focal length of 1.2m, a field of view of 30o?4o and an F/4 is designed by using Zernike free-form surface. The structure of the system is compact and the modulation transfer function of each field of view is greater than 0.52.3 at 40 lp/mm. The design of a concentric multi-scale optical system is studied. Multiscale optical system can solve the contradiction between field of view and resolution, and is the best way to realize large field of view and high resolution imaging at the same time. The theory of concentric multiscale design is studied, the focal length formula of concentric spherical lens, achromatic condition and spherical aberration condition are deduced, and the image plane movement of concentric spherical lens is analyzed. Based on the concentric multi-scale design theory, a 1-billion-pixel concentric multi-scale optical system with a focal length of 35mm, a field of view of 120o? 60o and an F/2.8 pixel is designed. The modulation transfer function of each field of view is greater than 0.3 at 270lp/mm. The optical system consists of 104 microphases. Finally, the tolerance analysis of the concentric multi-scale optical system is carried out. 4) The optical system design of curved Petzval image plane is studied. In order to evaluate the distortion of the optical system more accurately, the concept of arc length distortion is proposed. A curved Petzval image plane optical system with focal length of 100 mm, field of view of 40 O and F/2.8 is designed. The modulation transfer function of each field of view is greater than 0.69 at 100 lp/mm, relative illumination 92.4% and arc length distortion 0.5%. Compared with the traditional optical system, the curved Petzval image plane optical system has compact structure and the number of components. The optical system of curved Petzval image plane provides a new development direction for large field of view and high resolution imaging.
【学位授予单位】:中国科学院长春光学精密机械与物理研究所
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TH74
【相似文献】
相关期刊论文 前10条
1 ;光学系统设计(原书第4版)[J];应用光学;2009年06期
2 ;《光学系统设计》[J];红外技术;2009年11期
3 ;光学系统设计[J];光学机械;1977年06期
4 姜会林;;用“信价比”评价光学系统设计的经济效益[J];长春光学精密机械学院学报;1985年04期
5 ;欢迎参加“现代光学系统设计和象质评价”学术交流会议[J];光学仪器;1997年02期
6 刘娜,景超,张红霞,张以谟,井文才,周革;微形貌光电观测镜的光学系统设计[J];光电工程;2005年01期
7 江恒;杨坤涛;;激光光学系统设计中球差对像方束腰的影响[J];激光与红外;2006年02期
8 刘宝元;刘钧;路绍军;;学生“现代光学系统设计”计算能力培养的探索与实践[J];中国西部科技;2008年27期
9 ;“2010光学英才论坛——先进光学系统设计、加工及检测技术”成功召开[J];红外与激光工程;2010年04期
10 李晓艳;王乐;石岩;;注重素质和实践能力的现代光学系统设计课程教学方法研究[J];科技信息;2011年02期
相关会议论文 前10条
1 马兰;唐勇;;大倍率大口径观光望远镜的光学系统设计[A];2008中国仪器仪表与测控技术进展大会论文集(Ⅲ)[C];2008年
2 丁全心;熊钟秀;;应用于高速飞行器的共形光学系统设计研究[A];第九届全国光电技术学术交流会论文集(下册)[C];2010年
3 王永纲;;静电电子(离子)光学系统设计[A];第7届全国核电子学与核探测技术学术年会论文集(二)[C];1994年
4 吕德胜;屈求智;汪斌;赵剑波;李唐;周子超;史春艳;魏荣;刘亮;王育竹;;空间冷原子钟光学系统设计[A];2009全国时间频率学术会议论文集[C];2009年
5 樊学武;;基于变形镜的详普查一体化空间光学系统设计[A];第十届全国光电技术学术交流会论文集[C];2012年
6 王汝琳;王霞;;新型矿用红外瓦斯传感器的光学系统设计[A];第十届全国煤矿自动化学术年会论文集[C];2000年
7 刘根荣;崔向群;;Shack-Hartmann波前检测仪的光学系统设计与应用[A];江苏、山东、河南、江西、黑龙江五省光学(激光)联合学术'05年会论文集[C];2005年
8 汤天瑾;李妥妥;;一种超大相对孔径1:0.6镜头的光学系统设计[A];中国光学学会2011年学术大会摘要集[C];2011年
9 姚罡;傅丹膺;黄颖;;集成式双线阵立体测绘相机光学系统设计[A];中国光学学会2010年光学大会论文集[C];2010年
10 江恒;曾文锋;刘军;王在渊;;激光光学系统中球差的研究[A];2009年先进光学技术及其应用研讨会论文集(下册)[C];2009年
相关博士学位论文 前4条
1 徐奉刚;大视场高分辨率成像光学系统设计研究[D];中国科学院长春光学精密机械与物理研究所;2017年
2 方煜;成像光谱仪光学系统设计与像质评价研究[D];中国科学院研究生院(西安光学精密机械研究所);2013年
3 寇婕婷;衍射光栅效率自动测试仪光学系统设计与测量误差修正方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2012年
4 邵磊;激光多普勒效应远距离测量爆炸过程动态参数的研究[D];天津大学;2007年
相关硕士学位论文 前10条
1 韩少博;红外搜跟场景投射器投影子系统光学系统设计[D];西安工业大学;2015年
2 黄幼萍;数码裂隙灯显微成像光学系统设计[D];福建师范大学;2015年
3 范沣曦;实现LED二次配光的自由曲面光学系统设计[D];浙江大学;2015年
4 肖宇刚;激光测距瞄准镜光学系统设计研究[D];南京理工大学;2014年
5 陈冲;医用硬性内窥镜光学系统设计[D];长春理工大学;2010年
6 朱立荣;超大口径四反射镜光学系统设计[D];苏州大学;2007年
7 晏蕾;可见/红外双波段航空光电侦察平台光学系统设计[D];中国科学院研究生院(长春光学精密机械与物理研究所);2010年
8 赵剑;用于激光目标识别测量的光学系统设计[D];西安电子科技大学;2012年
9 卢凤凰;激光三角测量光学系统设计及性能分析[D];西南交通大学;2011年
10 崔胜利;红外成像光学系统设计[D];重庆大学;2008年
,本文编号:2197466
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2197466.html