长焦距宽视场空间相机主支撑结构优化设计
[Abstract]:The off-axis three-mirror optical system is widely used as an optical system for space cameras because of its large field of view, high resolution and close to ideal imaging performance and effect. However, due to the asymmetric characteristics of its optical system, its supporting structure design and adjustment technology is generally recognized as a technical difficulty compared with the coaxial symmetric system. In addition, in order to realize the large width and high ground resolution of the space camera and the integration of the detailed survey function, it is necessary to continuously increase the focal length and field of view angle of the optical system. The position accuracy of each optical component is more strict, and the dimensional stability of the space camera in the process of installation, transportation and launch is more difficult to maintain, which brings great challenges to the design of the main supporting structure. In this paper, the main, third, folding mirror length is over 1200mm, the aspect ratio is more than 3: 1, the mass is more than 40kg, the distance between primary and secondary mirrors is more than 1500mm, according to the space camera of an off-axis three-mirror system, the length of folding mirror is more than 1200mm, the ratio of length to width is more than 3: 1. The optimization design and mechanical properties of the main support structure of the large off-axis three-counter space camera are studied in the following five aspects. This paper investigates the typical forms of the main support structure of off-axis space camera at home and abroad. In view of the characteristics of high resolution and wide field of view off-axis three-mirror optical system, the advantages and disadvantages of different supporting modes are analyzed, and the main support structure form .2suitable for this thesis is selected. Study on topological form of Truss structure. According to the variable density method, the multi-objective topology optimization design of the truss bracing structure studied in this paper is carried out, and the suitable truss initial structure is designed, and the initial structure is divided into various sub-structures. The influence of truss bar angle on the performance of substructure truss is studied. Research on Optimization Design of Front frame structure. According to the characteristics of optical system, the front frame structure of integrated supporting folding mirror and secondary mirror assembly is presented. First of all, according to the processing technology and the size requirements of the front frame, through the analysis and comparison of the different engineering materials commonly used in aerospace, the titanium alloy is selected as the development material of the front frame. According to the defect that there is no relation between constraint points in the method of modal topology optimization based on constraints, a new topology optimization method based on free mode and constraint mode is proposed to optimize the lightweight form of frame structure before design. The free mode analysis and MIMO free mode test of the developed front frame structure are carried out, and the correctness of the optimization and analysis method is verified. Optimization design of truss rod size based on dynamic objective. Based on the theory of random vibration, the assumption that strengthening the stiffness of the local region can reduce the random vibration response of the region is proposed. According to this viewpoint, a multi-objective dimension optimization method based on the minimum random vibration response of the mirror mounting point is proposed to optimize the size of the truss bar in this paper. The static mechanical analysis and test are carried out through the force and heat sample maneuver of the truss structure. The rationality of the design method is verified, and the correctness of the theoretical hypothesis proposed in this paper is verified. Heat dissipation design of truss structure. The characteristics of thermal deformation of off-axis space camera truss structure are studied. According to the principle of equal axial distance of truss bar after thermal deformation, the function relation of thermal expansion coefficient of each truss is calculated according to the requirement of optical tolerance. The range of thermal expansion coefficient of truss rod is calculated, and according to the design characteristics of thermal expansion coefficient of carbon fiber composite material, two factors, stiffness and coefficient of thermal expansion, are integrated. A lamination method of carbon fiber composite material for truss bar was designed to meet the performance requirements.
【学位授予单位】:中国科学院长春光学精密机械与物理研究所
【学位级别】:博士
【学位授予年份】:2017
【分类号】:V445.8
【相似文献】
相关期刊论文 前10条
1 贾海涛;韩旭;吴清文;刘宏伟;;梁单元在空间相机结构中的应用[J];微计算机信息;2009年19期
2 孙天宇;;空间相机空间环境专项试验设计[J];光机电信息;2011年12期
3 武星星;刘金国;周怀得;张博研;;基于光照条件的空间相机增益在轨自动调整[J];光学学报;2014年03期
4 李朝辉,武克用;图像矩心内插法在空间相机实时检焦中的应用[J];光学精密工程;2000年04期
5 李朝辉,匡海鹏,韩昌元,武克用;空间相机相关法实时检焦技术研究[J];仪器仪表学报;2002年02期
6 单宝忠,武克用,卢锷;结合有限元法的空间相机优化设计[J];光学精密工程;2002年01期
7 吴清文,杨洪波,杨近松,陈长征,王忠素,刘宏伟,高明辉;空间相机中主镜及其支撑方案设计与分析方法[J];光学技术;2004年02期
8 李威;李朝晖;颜昌翔;王延风;王家骐;;胶片型空间相机的快门设计和研究[J];光学精密工程;2005年S1期
9 陈荣利,赵信民,解永杰,马臻,樊学武,李英才;高分辨率空间相机的工程分析[J];光子学报;2005年02期
10 项卫国;常宁华;;空间相机中与大口径透镜有关的结构设计分析[J];航天返回与遥感;2006年01期
相关会议论文 前10条
1 王兵;李春林;阳明;;空间相机热管理技术[A];第二十三届全国空间探测学术交流会论文摘要集[C];2010年
2 张培坤;高伟;宋宗玺;;一种空间相机的数据通信系统设计[A];中国光学学会2010年光学大会论文集[C];2010年
3 王虎;白瑜;罗建军;;大口径长焦距高分辨率空间相机光学系统设计[A];第十届全国光电技术学术交流会论文集[C];2012年
4 宁飞;贺庚贤;王栋;;空间相机仿真测试方法[A];第十三届全国光学测试学术讨论会论文(摘要集)[C];2010年
5 张雷;王栋;金光;;轻型空间相机热补偿与结构一体化设计研究[A];中国空间科学学会第七次学术年会会议手册及文集[C];2009年
6 王永辉;范斌;蔡伟军;卜勇力;;空间相机大口径反射镜支撑技术概述[A];第二十三届全国空间探测学术交流会论文摘要集[C];2010年
7 王晓东;吕宝林;李丙玉;曲洪丰;;空间相机高速科学数据数传接口信号特性研究[A];第九届全国信息获取与处理学术会议论文集Ⅰ[C];2011年
8 王伟刚;雷文平;曹东晶;项卫国;;等热阻异型导热结构在空间相机应用[A];第二十三届全国空间探测学术交流会论文摘要集[C];2010年
9 胡斌;黄颖;苏云;;透射式空间相机消热差无热化设计[A];中国光学学会2010年光学大会论文集[C];2010年
10 张博文;;微振动对刚体空间相机图像质量的影响分析[A];第二届高分辨率对地观测学术年会论文集[C];2013年
相关博士学位论文 前9条
1 郭权锋;同轴三反空间相机结构稳定性研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2012年
2 赵庆磊;空间相机主控系统的控制策略研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2016年
3 魏磊;长焦距宽视场空间相机主支撑结构优化设计[D];中国科学院长春光学精密机械与物理研究所;2017年
4 陈新东;应用于空间相机的主动变形镜研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2012年
5 王国辉;空间相机胶片传输控制系统研究[D];中国科学院长春光学精密机械与物理研究所;2001年
6 李伟雄;高分辨率空间相机敏捷成像的像移补偿方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2012年
7 李威;空间相机主次镜间支撑结构技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2010年
8 刘海龙;空间相机振动参数检测及降质图像复原[D];中国科学院研究生院(长春光学精密机械与物理研究所);2015年
9 程强;基于PD方法的空间相机位相信息反演技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2013年
相关硕士学位论文 前10条
1 邓平;TMA空间相机连接可靠性设计[D];中国科学院研究生院(长春光学精密机械与物理研究所);2015年
2 刘月;提升空间相机主动热控制性能方法的研究[D];中国科学院长春光学精密机械与物理研究所;2016年
3 王博;微振动对空间相机成像影响分析[D];华中科技大学;2015年
4 王红娟;微振动对空间相机像质影响研究[D];中国科学院研究生院(西安光学精密机械研究所);2013年
5 袁健;大型空间相机出瞳镜精密调整结构设计与分析[D];中国科学院研究生院(长春光学精密机械与物理研究所);2015年
6 刘旭跃;空间相机故障诊断专家系统的研究与实现[D];中国科学院研究生院(长春光学精密机械与物理研究所);2010年
7 李颖;空间相机动力学分析[D];西北工业大学;2003年
8 周旭;空间相机快门装置结构分析及优化研究[D];华中科技大学;2012年
9 罗彬;空间相机快门装置结构设计及寿命试验研究[D];华中科技大学;2013年
10 谭进国;空间相机小型反射镜周边支撑结构研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2011年
,本文编号:2203248
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2203248.html