当前位置:主页 > 硕博论文 > 工程博士论文 >

巴基斯坦费萨尔巴德市和中国大连市空气质量比较研究

发布时间:2018-09-06 13:52
【摘要】:在发展中国家,如中国和巴基斯坦,大气污染逐渐成为一个严重的环境问题。造成这种情况的原因主要有两个:工业的快速发展和污染物不受限制和规定的排放。毫无疑问,由各种天然或人为原因造成的大气污染已经影响到人们日常生活,并且日益加剧。本研究旨在分析监控现阶段中国大连市和巴基斯坦费萨尔巴德市的大气污染水平。木论文收集的数据代表了来自不同国家的两个人口密集和工业化城市的空气质量。主要评价了其大气中的悬浮颗粒物(pM_(2.5)和PM_(10))、二氧化硫(SO_2)、二氧化氮(NO_2)以及一氧化碳(CO)的浓度水平。评估了两个城市在2013年的不同位点的污染物浓度水平。采用五种污染物参数(PM_(2.5)、NO_2、SO_2、CO和PM_(10))的浓度构建了空气质量评价模型,并利用人工神经网络(ANNs)建立了预测模型。最后,分别采用四种不同区域的大气质量标准(NEQS[巴基斯坦国家环境质量标准]、NAAQS[美国环境保护署国家环境空气质量标准]、CNAAQS[中国国家环境空气质量标准]和WHO[世界卫生组织])评价和对比了两个城市的空气质量。(1)本文收集评估了中国大连市和巴基斯坦费萨尔巴德市PM_(2.5)和PM_(10)的浓度。费萨尔巴德市PM_(2.5)浓度为22-49μg/m~3(平均36.5 μg/m~3),PM_(10)浓度为109-164.3μg/m~3(平均 148.3 μg/m~3)。大连市PM_(2.5)浓度为5.5-93.3 μg/m~3(平均29.1 μg/m~3),PM_(10)浓度为 10.5-101.1μg/m~3(平均45.9μg/m~3)。费萨尔巴德市冬季PM_(2.5)比干燥的夏季高,但总体来讲冬季夏季PM_(2.5)和PM_(10)都明显不同;大连市污染物的浓度变化范围比费萨尔巴德市大。费萨尔巴德市平均悬浮颗粒物浓度比大连市高(甚至高于NEQS和NAAQS可允许的最高浓度);此外,大连市的悬浮颗粒物浓度符合CNAAQS和WHO标准。(2)比较研究重估了两个城市环境空气中NO_2,SO_2以及CO的浓度。费萨尔巴德市NO_2浓度为185-262μg/m~3,大连市为44-133 μg/m~3。费萨尔巴德市和大连市的SO_2浓度分别为66-190 μg/m~3和56-128 μg/m~3,CO浓度分别为5.4-22.3 mg/m~3和0.3-2.8 mg/m~3。大连市三种气态污染物的年平均浓度低于标准值,而费萨尔巴德市三种气态污染物的年平均浓度则相当高。(3)人工神经网络计算费萨尔巴德市NO_2,SO_2以及CO的浓度分别为80μg/m~3,120μg/m~3和 10mg/m~3,而观察值分别为 76μg/m~3,116μg/m~3和 9.3mg/m~3。大连市 NO_2,SO_2以及CO的计算浓度分别为58 μg/m~3,108 μg/m~3和9.1 mg/m~3,而观察值分别为52μg/m~3,102μg/m~3和8.8mg/m~3。人工神经网络计算费萨尔巴德市PM_(10)和PM_(2.5)的浓度分别为151.4 μg/m~3和53.6 μg/m~3,而观察值分别为144 μg/m~3和48 μg/m~3。大连市PM_(10)和PM_(2.5)的计算浓度分别为105.7 μg/m~3和45.4 μg/m~3,而观察值分别为101.1 μg/m~3和44.4μg/m~3。费萨尔巴德市PM_(2.5)和PM_(10)的年平均浓度高于NEQS和NAAQS标准(35 μg/m~3和150μg/m~3),但符合CNAAQS和WHO标准(75μg/m~3和150μg/m~3)。大连市颗粒物浓度均在允许浓度范围内。大连市NO_2,SO_2以及CO均在NEQS标准(80μg/m~3,120μg/m~3和 10mg/m~3),NAAQS 标准(100μg/m~3,120μg/m~3和 10mg/m~3)和 CNAAQS标准(80μg/m~3,150μg/m~3和10mg/m~3)的允许范围内,但高于WHO标准(40μg/m~3,20 μg/m~3和10 mg/m~3)。不论是ANNs模型预测还是实际检测,费萨尔巴德市NO_2,SO_2,CO,PM_(10)和PM_(2.5)的浓度均高于大连市。
[Abstract]:Air pollution is becoming a serious environmental problem in developing countries, such as China and Pakistan. There are two main reasons for this: the rapid development of industry and unrestricted and regulated emissions of pollutants. The purpose of this study is to analyze and monitor air pollution levels in Dalian, China, and Faisalbad, Pakistan at this stage. The data collected in this paper represent air quality in two densely populated and industrialized cities from different countries. Particulate matter (PM_ (2.5) and PM_ (10) in the atmosphere are mainly evaluated. Concentration levels of sulfur dioxide (SO_2), nitrogen dioxide (NO_2) and carbon monoxide (CO) were assessed at different sites in the two cities in 2013. Air quality assessment models were constructed using five pollutant parameters (PM_ (2.5), NO_2, SO_2, CO and PM_ (10)) and predicted using artificial neural networks (ANNs). Finally, the air quality of the two cities was evaluated and compared using four different regional air quality standards (NEQS, NAAQS, CNAAQS and WHO). Concentrations of PM_ (2.5) and PM_ (10) were assessed in Chinese and Pakistani cities of Dalian and Faisalbad. The concentrations of PM_ (2.5) and PM_ (10) in Faisalbad were 22-49 ug/m~3 (average 36.5 ug/m~3), 36.5 ug/m~3 (average 36.5 ug/m~3), 109-164.3 ug/m~3 (average 148.3 ug/m~3). PM_ (2.5) were 5.5-93.3 ug/m~3 (average 29.1 ug/m~3), PM_ (average 29.1 ug/m~3), PM_ (average 29.1 ug/m~3), PM_ (average 36.101 PM_ (2.5) in winter is higher than that in dry summer, but PM_ (2.5) and PM_ (10) are obviously different in winter and summer. The concentration range of pollutants in Dalian is larger than that in Faisalbad. The average suspended particulate concentration in Faisalbad is higher than that in Dalian (even higher than that of NEQS and NAAQS). The concentration of NO_2, SO_2 and CO in ambient air of Dalian and Faisalbad was 185-262 ug/m~3, and that of Dalian was 44-133 ug/m~3. The concentration of SO_2 in Faisalbad and Dalian was 66-190 ug/m~3, respectively. The annual average concentrations of three kinds of gaseous pollutants in Dalian are lower than the standard values, while the annual average concentrations of three kinds of gaseous pollutants in Faisalbad are quite high. (3) The concentrations of NO_2, SO_2 and CO in Faisalbad are 80 ug/m~3, 1.3-2.8 mg/m~3, respectively, calculated by artificial neural network. The calculated concentrations of NO_2, SO_2 and CO in Dalian were 58 ug/m~3, 108 ug/m~3 and 9.1 mg/m~3, respectively, while the observed values were 52 ug/m~3, 102 ug/m~3 and 8.8 mg/m~3, respectively. The concentrations of PM_ (10) and PM_ (2.5) in Faisalbad were 15 ug/m~3, 10 ug/m~3 and 8.8 mg/m~3, respectively. The calculated concentrations of PM_ (10) and PM_ (2.5) in Dalian City were 105.7 ug/m~3 and 45.4 ug/m~3 respectively, while the observed values were 101.1 ug/m~3 and 44.4 ug/m~3 respectively. The annual average concentrations of PM_ (2.5) and PM_ (10) in Faisalbad City were higher than those in NEQS and NAAQS Standards (35 ug/m~3 and 150 ug/m~3), respectively. The concentration of particulate matter in Dalian is within the allowable range. The concentration of NO_2, SO_2 and CO in Dalian is within the allowable range of NEQS standard (80 ug/m~3, 120 ug/m~3 and 10 m g/m~3), NAAQS standard (100 ug/m~3, 120 ug/m~3 and 10 m g/m~3) and CNAQS standard (80 ug/m~3, 150 ug/m~3 and 10 m g/m~3). The concentrations of NO_2, SO_2, CO, PM_ (10) and PM_ (2.5) in Faisalbad were higher than those in Dalian, regardless of ANNS model prediction or actual detection.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:X51

【参考文献】

相关期刊论文 前8条

1 David Y.H.Pui;Sheng-Chieh Chen;Zhili Zuo;;PM_(2.5) in China:Measurements,sources,visibility and health effects,and mitigation[J];Particuology;2014年02期

2 赵晨曦;王云琦;王玉杰;张会兰;赵冰清;;北京地区冬春PM_(2.5)和PM_(10)污染水平时空分布及其与气象条件的关系[J];环境科学;2014年02期

3 Fahe Chai;Jian Gao;Zhenxing Chen;Shulan Wang;Yuechong Zhang;Jingqiao Zhang;Hefeng Zhang;Yaru Yun;Chun Ren;;Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China[J];Journal of Environmental Sciences;2014年01期

4 Judith C.Chow;John G.Watson;;Seasonal variations and sources of mass and chemical composition for PM_(10) aerosol in Hangzhou,China[J];Particuology;2009年03期

5 ;Artificial neural network model for identifying taxi gross emitter from remote sensing data of vehicle emission[J];Journal of Environmental Sciences;2007年04期

6 ;Study of statistically correcting model CMAQ-MOS for forecasting regional air quality[J];Science in China(Series D:Earth Sciences);2005年S2期

7 王淑兰,张远航,钟流举,李金龙,于群;珠江三角洲城市间空气污染的相互影响[J];中国环境科学;2005年02期

8 ;Influence of fuel quality on vehicular NOx emissions[J];Journal of Environmental Sciences;2001年03期



本文编号:2226547

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2226547.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户48c35***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com