基于声发射的球轴承疲劳演化特征提取研究
[Abstract]:Rolling bearing is one of the key components in the industrial field. Peeling is an important failure form of rolling bearing. It usually forms a crack core at the weak point below the surface by alternating stress between the roller and the raceway surface, and then the crack expands to the material surface to form pitting corrosion and peeling. Whether the enterprise can reasonably formulate equipment maintenance, maintenance, spare parts, spare parts plan to cope with unexpected situations, avoid economic losses, major accidents and even casualties, etc., and can reasonably use the service life of rolling bearings, fully tap their working potential and avoid waste. Therefore, mastering the fatigue evolution process of rolling bearings will have In addition, the accurate fatigue evolution data is an important data source for the theory of performance degradation assessment and life prediction of rolling bearings, and it is also an accurate guarantee for the calculation results. The classical state monitoring and fault diagnosis technology based on vibration can only obtain the damaged state of the surface, which has certain limitations for early fatigue detection. In the early 1950s, the pioneering work of Kaiser, a German scholar, promoted the birth and development of modern acoustic emission technology, and gradually became a powerful tool to obtain early fatigue damage information of rolling bearings. Although AE data of bearing can accurately reflect its fatigue evolution process, the time cost is high, and the existing fatigue test schemes have complex transmission paths and large signal attenuation. The process method usually adopts trend analysis of 3-5 traditional AE indexes, which has many shortcomings, such as manual determination of fixed threshold voltage and easy introduction of subjective disturbance. A few features are not enough to fully reflect the fatigue state of rolling bearings, and the research on the relationship between characteristics and damage is not deep enough. The redundancy and irrelevance between features will interfere with the acquisition of fatigue process information. Moreover, different characteristics have different sensitivities. Evolutionary information is unevenly distributed among the features, requiring a certain amount of professional knowledge and experience. Effective extraction of fatigue evolution characteristics of rolling bearings is the key to solve the above problems. This dissertation is based on the National Natural Science Foundation project "Research on pitting fatigue life estimation of ball bearings based on acoustic emission and numerical model" (item number: 51465022), and the National Natural Science Foundation of China (NSFC), "Undetermined time-varying noise field of underwater moving targets" Blind Extraction Model and Its Algorithms Research (Project Number: 51265018) and other funding, based on acoustic emission technology, around the problem of effective extraction of fatigue evolution characteristic information in the whole life stage of rolling bearings from non-destructive to peeling failure, a research route combining theoretical research with experimental verification was established preliminarily based on acoustic emission technology. The extraction method framework of rolling bearing contact fatigue evolution information mainly includes the following contents: (1) Combining with rolling bearing condition monitoring theory and engineering requirements, this paper reviews the related research methods of rolling bearing fatigue, acoustic emission theory and acoustic emission monitoring technology, noise reduction technology, feature evaluation and feature extraction technology at home and abroad. (2) The shortcomings of traditional AE monitoring indexes are analyzed, and an AE monitoring index based on floating threshold and averaging is given. The trend analysis of multiple indexes is carried out. The analysis shows that the improved AE index can give better fatigue evolution information. A new type of rolling bearing fatigue test bench is designed, which provides a test and verification platform for subsequent theoretical research. (3) Aiming at the problem of easy mixing noise in the acoustic emission signals collected, in-depth study is carried out. The noise sources and characteristics of AE signals are analyzed and the conventional processing methods are given. For the noise which is difficult to be solved by conventional processing, a weighted threshold wavelet packet denoising algorithm based on quadratic correlation theory is proposed from the angle of the similarity of the autocorrelation form between the noise in AE signals and the introduced noise, and the simulation and implementation are carried out. Experimental study on acoustic emission signals of thrust ball bearings shows that the method can suppress the noise of acoustic emission signals, improve the signal-to-noise ratio and stabilize the acoustic emission signals. The impact of acoustic emission signals after noise reduction is obvious. (4) The shortcomings of existing distance evaluation methods are analyzed. On the basis of traditional distance evaluation method, a distance evaluation method based on position compensation coefficient is proposed to improve the accuracy and stability of target recognition. Experimental results show that the sensitive feature set selected by this method has higher damage identification. Fifthly, based on the above algorithm, a fatigue evolution information extraction algorithm based on Improved Particle Swarm Optimization (PSO) kernel entropy component analysis is proposed, which covers the least feature components and the most effective information. A quadratic feature fusion algorithm is proposed to fuse the fused features to extract the evolution information of rolling bearings more efficiently. The results of AE data analysis show that the improved kernel entropy analysis can effectively identify the fatigue evolution stage of rolling bearings and the quadratic fusion feature extraction algorithm can converge greatly. The fatigue evolution information from each dimension feature is gathered, and the fatigue process of rolling bearings can be easily and effectively characterized by a single secondary fusion feature.
【学位授予单位】:昆明理工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TH133.33
【相似文献】
相关期刊论文 前10条
1 胥良;姜泽凡;李前银;;黄龙钙华景观演化特征及保护措施探讨[J];地质灾害与环境保护;2007年04期
2 樊晓一;;滑坡位移多重分形特征与滑坡演化预测[J];岩土力学;2011年06期
3 肖进;;折线型岸坡的演化特征与防治加固[J];建筑科学;2013年05期
4 李仕雄,姚令侃,蒋良维;松散边坡演化特征及其应用[J];四川大学学报(工程科学版);2004年02期
5 梅应堂;;长江三峡工程地区构造变动发展及演化特征[J];人民长江;1992年11期
6 刘雷艳;安裕伦;;毕节石灰岩地区不同土地利用的景观演化特征分析[J];贵州师范大学学报(自然科学版);2011年03期
7 王之田,张树文,孙树人,李忠军;大兴安岭东南缘成矿集中区成矿演化特征与找矿潜力[J];有色金属矿产与勘查;1997年S1期
8 辜建军;;某井场基坑变形时空演化特征的底摩擦试验[J];山西建筑;2014年14期
9 刘善军;吴立新;张艳博;李国良;陈群龙;;拐折非连通断层加载失稳的热辐射演化特征[J];岩石力学与工程学报;2009年S2期
10 段玲玲;徐国志;刘泰峰;;邯邢铁矿区土壤与玉米中重金属的演化特征[J];科技视界;2014年08期
相关会议论文 前10条
1 刘宝明;张汉泉;夏斌;;南沙海域断裂演化特征及其与南海海盆的演化关系[A];中国地球物理.2003——中国地球物理学会第十九届年会论文集[C];2003年
2 朱卫平;刘英会;;武夷—东海古陆存在的证据及其早期演化特征[A];中国地球物理·2009[C];2009年
3 尹观;范晓;;稻城温泉水的同位素季节性效应及氘过量参数值演化特征[A];中国矿物岩石地球化学学会第九届学术年会论文摘要集[C];2003年
4 洪汉净;汪一鹏;;我国大陆地壳变形的平均图象与演化特征[A];中国地震学会第六次学术大会论文摘要集[C];1996年
5 张元生;魏从信;张璇;郭晓;;2013年4月16日伊朗-巴基斯坦交界7.8级地震的热异常特征[A];中国地震学会地震电磁学专业委员会2013年年会论文集[C];2013年
6 代鸿章;陈翠华;顾雪祥;;云南者桑金矿床铅同位素演化特征及其指示意义[A];中国矿物岩石地球化学学会第14届学术年会论文摘要专辑[C];2013年
7 耿斌;;创意产业集聚区空间演化特征研究——以上海市为例[A];生态文明视角下的城乡规划——2008中国城市规划年会论文集[C];2008年
8 焦淑沛;;塔里木—柴达木地洼区的地史演化特征及其归属问题[A];青藏高原地质文集(15)——岩石、构造地质[C];1983年
9 郭彦双;马瑾;卓燕群;;平直断层失稳前应变场演化特征的实验研究[A];中国地震学会第14次学术大会专题[C];2012年
10 刘云;樊威;闫哲;程旖婕;;纳米全球合作创新网络结构与演化特征分析[A];第十届中国科技政策与管理学术年会论文集——分8:科学学与政策科学理论方法[C];2014年
相关博士学位论文 前3条
1 王晓娟;中国冬季区域性低温事件的识别、时空演化特征及其与欧亚阻塞流型的联系研究[D];兰州大学;2015年
2 张建国;强震前电磁辐射异常演化特征及其机理探索研究[D];中国科学技术大学;2017年
3 王之海;基于声发射的球轴承疲劳演化特征提取研究[D];昆明理工大学;2017年
相关硕士学位论文 前9条
1 谢雷;宿迁市更新世晚期以来的色度指标与气候演化特征[D];中国地质大学(北京);2015年
2 邵莹斐;转型期徽州传统滨河聚落空间演化特征及动力机制研究[D];安徽建筑大学;2015年
3 姬新强;韩城矿区构造煤分子结构演化特征[D];太原理工大学;2016年
4 乔雨;吉林省中部高平原区地下水时空演化特征研究[D];吉林大学;2016年
5 赵博;平庄—马厂盆地地质构造及演化特征[D];辽宁工程技术大学;2014年
6 刘啸虎;准噶尔盆地克拉美丽山前构造及演化特征分析研究[D];西南石油大学;2016年
7 张国强;闪电首次回击过程中通道温度与电导率演化特征的研究[D];西北师范大学;2016年
8 李宁;采场压力拱演化特征及失稳机理分析[D];燕山大学;2014年
9 王晶;麦盖提斜坡玛南断裂带演化特征及其油气意义[D];成都理工大学;2012年
,本文编号:2235501
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2235501.html