当前位置:主页 > 硕博论文 > 工程博士论文 >

无导叶对转涡轮高压级动叶换热特性的研究

发布时间:2018-09-11 19:48
【摘要】:由于在提高推重比等方面的潜在优势,无导叶对转涡轮将会在未来高性能推进系统中发挥重要作用。根据气动布局特征,无导叶对转涡轮高压级具有高负荷和高反力度的特点,在此情况下,气流在高压级动叶内的膨胀程度很高,出口相对马赫数会达到1.3-1.5,动叶叶道内气流的高加速性以及与之相关的激波结构势必会对动叶表面的换热特性产生重要影响。为了研究无导叶对转涡轮高压级动叶的换热特性,本文研制了适用于旋转测量的双面薄膜式热流计,组建了高速旋转动态测量系统,并发展了相应的薄膜式热流计设计和旋转测量方法。在上述工作基础上,本文依托于中国科学院工程热物理研究所(IET)短周期涡轮试验台开展了对全尺寸无导叶对转涡轮试验件的高速旋转换热试验,并结合试验结果和CFD对无导叶对转涡轮高压级动叶在不同进口雷诺数下的换热特性进行了研究。本文涉及的主要研究内容及结论如下:1.系统的分析了薄膜式热流计薄膜厚度对热流计性能的影响,分析表明膜厚增加有利于提高信噪比,但是会导致高频热流结果所被引入的不确定度增大。本文提出了一种基于系统辨识理论的动态标定方法,能够有效降低薄膜厚度增加对高频热流结果所造成的影响。2.基于磁控溅射技术研制了双面薄膜式热流计,并形成了完整的设计、制造和标定方法,同时基于数字遥测技术组建了高速旋转动态测量系统,并在此基础上发展了适用的旋转测量方法。实践表明整个旋转测量系统运行可靠,各项参数均能够满足实际应用需求。3.基于全尺寸高速旋转换热试验结果和CFD对无导叶对转涡轮高压级动叶的静态换热特性进行了分析,发现吸力面气流加速极快,局部加速系数K会超过3×10-6,此时边界层具备"再层流化"的条件。在气流的强加速性下,动叶叶表边界层在吸力面大部分区域维持为层流边界层,这导致吸力面叶表换热从前缘开始随着边界层增厚而不断降低。在吸力面后半段,相邻叶片尾缘投射的斜激波与叶表发生干涉而致使边界层分离,这直接促成边界层由层流转捩为湍流,即发生"分离转捩",此时叶表换热会急剧升高。同时,随着进口雷诺数增加,吸力面表面的换热会整体增强,尤其对于分离转捩之后的湍流边界层,换热的增强效应更加明显。4.基于全尺寸高速旋转换热试验结果对无导叶对转涡轮高压级动叶的动态换热特性进行了研究,发现在吸力面前半段,叶表换热随着上游导叶排尾迹的通过会呈现出明显的周期性脉动现象。随着尾迹向下迁移,尾迹所引起的局部湍流区逐渐变宽,叶片后半段换热会因尾迹而持续得到增强,但周期性脉动现象会得到减弱。在吸力面后半段,叶片表面的换热除了受上游尾迹的影响外,还会受到下游叶排的影响。同时,随着进口雷诺数的增加,吸力面叶表非定常换热的脉动幅值会整体降低。
[Abstract]:Because of its potential advantages in improving the ratio of thrust to weight, the unguided vane pair turbine will play an important role in the future high performance propulsion system. According to the characteristics of aerodynamic layout, the unguided vane has the characteristics of high load and high reactivity to the rotating turbine high pressure stage. In this case, the expansion degree of the airflow in the high pressure turbine stage is very high. The relative Mach number of the outlet will reach 1.3-1.5. The high acceleration of the airflow and the associated shock wave structure will have an important influence on the heat transfer characteristics of the moving blade surface. In order to study the heat transfer characteristics of rotating turbine high pressure stage moving vane without guide vane, a double side thin film heat flow meter suitable for rotating measurement is developed in this paper, and a high speed rotating dynamic measuring system is constructed. The design and rotation measurement method of thin film heat flow meter are developed. On the basis of the above work, the high-speed rotating heat transfer test of full-size non-guide vane rotating turbine was carried out on the (IET) short-period turbine test-bed of the Institute of Engineering Thermal Physics of the Chinese Academy of Sciences. Combined with the experimental results and CFD, the heat transfer characteristics of the unguided vane counterrotating turbine high pressure moving vane at different inlet Reynolds numbers were studied. The main contents and conclusions of this paper are as follows: 1. The effect of film thickness on the performance of thin film heat flux meter is analyzed systematically. It is shown that the increase of film thickness is helpful to improve SNR, but the uncertainty of high frequency heat flux is increased. In this paper, a dynamic calibration method based on system identification theory is proposed, which can effectively reduce the effect of film thickness increase on the results of high frequency heat flux. Based on the magnetron sputtering technology, a double-sided thin film heat flux meter is developed, and a complete design, fabrication and calibration method is formed. At the same time, a high-speed rotating dynamic measurement system is constructed based on the digital telemetry technology. On this basis, a suitable rotation measurement method is developed. Practice shows that the whole rotating measurement system is reliable and all parameters can meet the practical application requirements. 3. Based on the results of full-scale high-speed rotating heat transfer test and CFD, the static heat transfer characteristics of the high pressure rotor blades of a turbine with no guide vane are analyzed. It is found that the suction surface airflow accelerates extremely quickly. The local acceleration coefficient K will exceed 3 脳 10 ~ (-6), and the boundary layer has the condition of "relayer fluidization". Under the strong acceleration of airflow, the blade surface boundary layer is maintained as laminar flow boundary layer in most areas of suction surface, which leads to the decrease of blade surface heat transfer from the front edge to the thickening of the boundary layer. In the latter half of the suction surface, the oblique shock projected from the tail edge of the adjacent blade interferes with the blade surface and results in the separation of the boundary layer, which directly contributes to the boundary layer transition from laminar flow to turbulence, that is, "separation transition", in which the heat transfer on the blade surface increases sharply. At the same time, with the increase of inlet Reynolds number, the heat transfer on the surface of suction surface will be enhanced as a whole, especially for turbulent boundary layer after separation transition, the enhancement effect of heat transfer is more obvious. Based on the results of full-scale high-speed rotating heat transfer test, the dynamic heat transfer characteristics of the high pressure rotor blade of a turbo with no guide vane are studied. It is found that in front of the suction, the dynamic heat transfer characteristics of the rotor blade are studied. The heat transfer of the blade surface shows obvious periodic pulsation with the passage of the upstream guide vane wake. With the wake moving downwards, the local turbulence caused by the wake gradually widens, and the heat transfer in the second half of the blade continues to increase because of the wake, but the periodic pulsation will be weakened. In the latter half of the suction surface, the heat transfer on the blade surface is affected not only by the upstream wake, but also by the downstream blade row. At the same time, with the increase of inlet Reynolds number, the pulsation amplitude of unsteady heat transfer on the suction surface blade surface will be reduced as a whole.
【学位授予单位】:中国科学院工程热物理研究所
【学位级别】:博士
【学位授予年份】:2017
【分类号】:V231.1

【相似文献】

相关期刊论文 前10条

1 李向阳;成文俊;赵永杰;杨琳梅;;高温高速气体射流冲击倾斜平板的换热特性研究[J];机电设备;2011年04期

2 杨震;赵振兴;郭琴琴;刘宏;曹子栋;;煤粉加压气化炉对流段换热特性试验[J];重庆大学学报;2011年10期

3 葛梦然;闫柯;高军;葛培琪;;空间锥形螺旋弹性管束换热特性数值分析[J];石油机械;2011年11期

4 李叶;刘圣春;饶志明;杨旭凯;;冰浆储存与融化及流动换热特性研究现状及展望[J];低温与超导;2012年11期

5 韩雅慧;;气体压力对气流冲击平板换热特性的影响研究[J];制造业自动化;2012年24期

6 刘东;蒋斌;陈飞;;微方肋冷却系统的换热特性[J];强激光与粒子束;2013年02期

7 常海萍,,黄太平,陈万兵;涡轮叶片与轮盘间枞树型榫头间隙中的流动与换热特性试验研究[J];TRANSACTIONS OF NANJING UNIVERSITY OF AERONAUTICS & ASTRONAUTICS;1995年01期

8 杜东兴,李志信,过增元,岳敏;微细光滑管内可压缩流动换热特性的数值研究[J];清华大学学报(自然科学版);2000年11期

9 庄正宁,唐桂华,朱长新;不凝气体存在时水平管束冷凝换热特性的试验研究[J];西安交通大学学报;2000年07期

10 翁锦萍,魏琪,吴志刚;两相闭式热虹吸管换热特性的数值模拟[J];节能技术;2000年01期

相关会议论文 前10条

1 董志锐;刘松龄;张玉金;许都纯;游绍坤;杨林;;涡轮叶栅端壁区的流动和换热特性试验研究[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年

2 李汶蔚;孙立成;李勇;;竖直管内蒸汽冷凝强化换热特性研究[A];中国核科学技术进展报告(第二卷)——中国核学会2011年学术年会论文集第3册(核能动力分卷(下))[C];2011年

3 徐绍琨;陈宝明;汲水;;小尺度流道换热器换热特性的实验研究[A];山东省暖通空调制冷2007年学术年会论文集[C];2007年

4 张圆圆;姬长发;毋震;;酒窝板换热器换热特性的实验研究[A];第二届中国西部绿色低碳节能减排及可再生能源技术研讨会论文集[C];2010年

5 黄翔超;丁国良;胡海涛;高屹峰;;R410A—油混合物在5mm光管内冷凝换热特性的实验研究[A];上海市制冷学会2009年学术年会论文集[C];2009年

6 刘家琛;巨永林;;低温绝热管内液氮两相流动换热特性研究[A];上海市制冷学会2013年学术年会论文集[C];2013年

7 张宗卫;朱惠人;赵曙;郭涛;;射流、旋流、出流共同作用下矩形通道换热特性研究[A];中国航空学会第七届动力年会论文摘要集[C];2010年

8 宁静红;刘圣春;彭苗;李惠宇;;R290管内凝结换热特性与凝结机制分析[A];第十届海峡两岸冷冻空调技术研讨会论文集[C];2011年

9 雷菲宁;徐小炜;苏亚欣;;结构参数对内置式PV-Trombe墙内换热特性影响[A];高等学校工程热物理第十九届全国学术会议论文集[C];2013年

10 侯亚丽;汪建文;;微管道内壁面平均温度的实验测量[A];高等学校工程热物理第十九届全国学术会议论文集[C];2013年

相关博士学位论文 前10条

1 张双;数据中心用泵驱动两相冷却回路换热特性研究[D];北京工业大学;2015年

2 徐晓;无导叶对转涡轮高压级动叶换热特性的研究[D];中国科学院工程热物理研究所;2017年

3 郭聪;被动式冷却系统中的流动冷凝及其对系统换热特性的影响[D];中国科学院研究生院(工程热物理研究所);2015年

4 路广遥;管束通道内单相及两相沸腾换热特性及流动特性的研究[D];上海交通大学;2008年

5 庄兆意;直接式原生污水源热泵系统的防堵技术及换热特性研究[D];哈尔滨工业大学;2012年

6 杜东兴;可压缩性及粗糙度对微细管内流动及换热特性的影响[D];清华大学;2000年

7 熊钧;HCFC123高温工况下水平管外冷凝换热特性研究[D];哈尔滨工业大学;2006年

8 刘东;高热流密度微结构散热器换热特性的研究[D];中国科学技术大学;2011年

9 陈华军;旋转曲线管道内流动结构与换热特性研究[D];浙江大学;2003年

10 孙多斌;供暖空调管网流体输配与换热特性的研究[D];大连理工大学;2007年

相关硕士学位论文 前10条

1 曾俊雄;流场涡旋核心分布对双工质冷却带肋通道换热特性的影响[D];大连交通大学;2015年

2 何院;旋转条件下典型形状孔结构流动与换热特性研究[D];南京航空航天大学;2014年

3 史学捷;对转涡轮盘腔内的流动和换热特性研究[D];中国民用航空飞行学院;2016年

4 徐世杰;大气压强对舱内空气流动与传热特性的影响研究[D];东南大学;2015年

5 郝玲;冰浆在管道中流动换热特性的研究[D];天津商业大学;2016年

6 段炼;倾斜和肋化靶面阵列射流冲击换热特性研究[D];南京航空航天大学;2016年

7 徐义凯;微型间歇式回热器流动及换热特性研究[D];南京航空航天大学;2016年

8 蒋蔚;双层壁微小尺度夹层冲击换热特性研究[D];沈阳航空航天大学;2017年

9 杨巧文;管内单相流动与传热特性的研究[D];安徽理工大学;2017年

10 赵明明;热泵冷热源污水的换热特性研究[D];哈尔滨工业大学;2008年



本文编号:2237692

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2237692.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户111d2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com