长大线路服役状态演化模型及关键参数估计算法研究
[Abstract]:High-speed railway is a complex large system, and service performance of train and line infrastructure changes dynamically with long-term operation. As the speed of train operation is greatly improved, the dynamic effect between wheel and rail is increased, resulting in the strengthening of the dynamic role of the infrastructure. China's high-speed railway is running on a large scale, and the line crosses multiple climatic zones, and the service performance is more complex. The decline of service performance of the line infrastructure leads to more bursty and serious potential disease, which greatly affects the operation safety of the line. Grasp the formation and distribution laws of the state parameters of the infrastructure, accurately sense the change trend of the state parameters of the critical section components, establish and perfect the scientific line health service status guarantee system, and have important significance for ensuring the safe and stable operation of the high-speed railway. In order to reflect the critical parameter orbital stress of line safety, this paper presents a study on multi-scale dynamic static modeling of seamless line and related parameter intelligent estimation algorithm, considering the evolution of service state of growth line, considering the slow change of temperature factor and transient effect of vehicle impact. The influence of rail stress on dynamic response of rail is analyzed, and the theory basis is provided for the detection and evaluation of rail stress. First, a gradual homogenization method for calculating the average performance parameters of large structures is put forward, and a multi-scale static model of growth line under the action of diurnal temperature and seasonal temperature is established. According to the structure characteristics of different sections in the circuit, different simulation scales are used to analyze the evolution rules of state parameters in each section. The refined model of retaining critical detail is established by using fine scale in line focus area. In this paper, the average performance of the typical structure is extracted and the macroscopic scale model is established. A multi-scale global line model is formed by the principle of consistent boundary behavior of local models with different scales, and the process of redistribution of line stress caused by local structural changes is simulated. In order to improve the calculation accuracy of the rail under multiple loads, an improved long rail unit is used in the multi-scale model, which takes into account the nonlinear effect of the unit cross-section rotation on the longitudinal and transverse displacement fields. At the same time, in order to calculate the accumulative deformation of the track under cyclic load, the constraint relation between the nonlinear connection unit and the contact unit of the sliding working condition can be reflected in the model. The validity and accuracy of the modeling method are verified by comparing the field measurement data of the transition section of the Beijing-Hangzhou Canal Bridge and the Xinqiao River Bridge of the Beijing-Hangzhou High-speed Railway. Secondly, the dynamic model of vehicle-rail coupling under longitudinal stress of rail is established, and the influence of longitudinal stress on rail and dynamic response of rail is analyzed. The differential equation of rail vibration considering longitudinal stress is presented. In this paper, the exact analytical form of the inherent vibration characteristics of the plate-type track on the longitudinal stress of the rail is derived by analyzing and re-combining the segment analysis of the track model, and the change of the inherent vibration characteristics of the rail under different longitudinal stress of the rail is studied. A modified track mode and frequency are introduced to calculate the dynamic response of the rail with the longitudinal stress of the rail. The influence of different vehicle speed and uneven condition on the rail stress in dynamic response of vehicle rail is analyzed by simulation test, and the theoretical foundation is provided for carrying out the research on the stress estimation algorithm based on the dynamic response of the rail. Finally, the rail stress intelligent estimation algorithm based on wheel-rail vibration response was carried out on the basis of mastering the stress distribution law of the track rail, and based on the significant correlation between wheel-rail dynamic response and longitudinal stress of rail. A rapid classification model of stress based on support vector machine is put forward, and the rail stress fast classification under vehicle-mounted condition is realized by measuring wheel-rail dynamic response. At the same time, the stress parameter estimation model based on genetic algorithm is proposed for the interference of strong orbit irregularity. The stress solution is transformed into the model parameter estimation problem, the continuity of stress distribution is utilized, and the calculation efficiency and accuracy of the estimation algorithm are improved. The recognition precision and applicable condition of these two methods are analyzed by simulation test. The research results help to construct a comprehensive monitoring system for service status of high-speed railway lines in our country, and provide theoretical and methodological support for scientific guidance and maintenance maintenance.
【学位授予单位】:北京交通大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:U216
【相似文献】
相关期刊论文 前10条
1 刘德华;变后掠飞行时飞机纵向动态响应规律探讨[J];空气动力学学报;1985年02期
2 邱传仁;周文伯;严震;;飞机对离散突风的动态响应[J];上海交通大学学报;1986年05期
3 陈廷楠;徐浩军;;垂直机动飞行时飞机投外挂后的动态响应[J];飞行力学;1987年03期
4 陈廷楠;徐浩军;;定常盘旋飞行时飞机投外挂后的动态响应[J];飞行力学;1989年02期
5 王静静;郑七振;;预制短板浮置板轨道落轴冲击动态响应[J];佳木斯大学学报(自然科学版);2012年04期
6 汪茂海,郭航,马重芳;运行参数对直接甲醇燃料电池动态响应的影响Ⅰ.甲醇溶液浓度和流量[J];电源技术;2005年05期
7 李家源;马国营;;低压无功功率补偿装置的动态响应试验新方法[J];低压电器;2013年04期
8 许秋莲,,刘元镛,汤玄春,李玉龙;结构考虑双非线性的动态响应[J];西北工业大学学报;1995年02期
9 余红路,沈静珠,胡山鹰;化工过程动态响应特征的提取及分类方法[J];化工学报;1998年01期
10 王野牧,张新敏,周忠喜,宋胜宪;液压系统动态响应计算方法比较[J];沈阳工业大学学报;1998年01期
相关会议论文 前8条
1 尚鸿雁;;二维PSD动态响应误差分析[A];高精度几何量光电测量与校准技术研讨会论文集[C];2008年
2 姜清辉;罗先启;丰定祥;;水压爆破冲击波荷载作用下梁的动态响应[A];新世纪岩石力学与工程的开拓和发展——中国岩石力学与工程学会第六次学术大会论文集[C];2000年
3 张军伟;陈伟;周忆;陈良明;周海;林东晖;;大口径反射镜架特征参数对其动态响应影响分析[A];中国光学学会2011年学术大会摘要集[C];2011年
4 白士红;李晓雷;庞思勤;谈诚;;冲击力作用下的人体动态响应的研究[A];人-机-环境系统工程研究进展(第七卷)[C];2005年
5 魏翠玲;周晶;王复明;;粘弹性层状地基的动态响应[A];第八届全国结构工程学术会议论文集(第Ⅲ卷)[C];1999年
6 廖晨聪;郑东生;;波流共同作用下海床土体全动态响应的解析解[A];第九届全国工程地质大会论文集[C];2012年
7 张青平;陈成军;陈刚;李思忠;;高速撞击下含间隙结构的动态响应数值模拟[A];中国工程物理研究院科技年报(2002)[C];2002年
8 成自龙;韩延方;王玉兰;范景连;姜俊成;赵伟;曾文艺;刘来福;;人体冲击与人体代用品关系的研究——猕猴与人动态响应规律的研究[A];第二届全国人—机—环境系统工程学术会议论文集[C];1995年
相关博士学位论文 前2条
1 郭一诗;长大线路服役状态演化模型及关键参数估计算法研究[D];北京交通大学;2017年
2 毛虎平;基于仿真模型的动态响应优化算法研究[D];华中科技大学;2011年
相关硕士学位论文 前10条
1 曹勇;多点变约束下硬旋铣大型螺纹的动态响应与表面粗糙度研究[D];南京理工大学;2015年
2 范原;脉冲负载直流变换器输出动态响应的研究[D];哈尔滨工业大学;2015年
3 杨波;多激励下8L265机体的动态响应分析[D];大连理工大学;2015年
4 孟晓永;电磁轨道炮复合型轨道的动态响应[D];燕山大学;2016年
5 李欢;基于H∞及V~2控制的高鲁棒性高动态响应控制方法研究[D];哈尔滨工业大学;2016年
6 胡鹏;基于动态响应的路面结构优化分析[D];中国民航大学;2015年
7 谢晖;水下冲击波作用下水面结构物动态响应研究[D];大连理工大学;2010年
8 陈霞;无铅BGA封装跌落冲击动态响应和失效分析[D];太原理工大学;2014年
9 江笠宇;数字开关电源中时域最优控制方法的研究与设计[D];吉林大学;2014年
10 胡国辉;汽车撞击下钢筋混凝土框架的动态响应及损伤机理研究[D];天津大学;2016年
本文编号:2254009
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2254009.html