当前位置:主页 > 硕博论文 > 工程博士论文 >

侧链型磺化聚芳醚酮Nafion改性剂的制备及Nafion复合膜的性能研究

发布时间:2018-12-27 12:42
【摘要】:通过调节聚合物主体中亲水性的侧链磺烷基结构与疏水性的全芳主链结构间的比例,制备了主链重复单元结构中仅含单个萘基基团的不同磺化度的侧链磺烷基萘基聚芳醚酮质子交换膜材料(SNPAEK-xx),其中,磺化度高于1.30的SNPAEK-xx膜展现出优异的质子传导性能,80 oC时的质子传导率值高于0.145S cm-1,最高质子传导率值高达0.191 S cm-1,明显优于相同条件下的Nafion膜的质子传导性能。基于不同磺化度的SNPAEK-xx聚合物,展开了侧链磺烷基结构萘基聚芳醚酮质子交换膜材料的性能研究。质子交换膜材料中,平面萘基基团特有的基团间的相互作用有助于疏水相区的聚集形成,进而有利于形成更加明显的亲疏水相区分离结构,此外,分子链间萘基基团间的相互作用还有助于提高膜材料的化学稳定性,增强膜材料的机械性能,降低膜材料的吸水性能,基于平面萘基基团的特殊作用,进一步制备了主链重复单元结构中含有两个萘基基团的不同磺化度的双萘基聚芳醚酮质子交换膜材料(SDN-PAEK-x),双萘基基团的引入,极大的提高了质子交换膜材料的质子传导率,电池性能结果显示,含双萘基结构的SDN-PAEK-1.94质子交换膜材料具有显著优于Nafion膜的电池性能,40 oC时的最大功率密度可达32 m W·cm~(-2),明显优于Nafion膜80 oC条件下24 m W·cm~(-2)的最大功率密度,同时SDN-PAEK-1.94膜80 oC条件下的最大功率密度达到了60 m W·cm~(-2),明显优于相同条件下的Nafion膜的最大功率密度,可作为潜在的质子交换膜材料应用于直接甲醇燃料电池。考虑到制备的聚合物分子链中重复单元结构中含单个萘基基团的SNPAEK-xx与含双萘基基团的SDN-PAEK-x磺化聚合物间的综合性能差异和制备成本双重因素,我们首先选用综合性能优良,成本相对较低的SNPAEK-1.35作为Nafion改性剂与Nafion复合,制备一系列不同SNPAEK-1.35聚合物质量含量的Nafion/SNPAEK-x复合膜,探究SNPAEK-1.35Nafion改性剂的引入对Nafion膜综合性能的影响,研究结果显示,Nafion复合膜中SNPAEK-1.35聚合物改性剂的引入具有提高Nafion膜质子传导性能、阻醇性能和甲醇体系下电池性能的作用,同时Nafion膜的其它性能也获得了一定程度上的改善提高。
[Abstract]:By adjusting the ratio of the hydrophilic side chain sulfonyl structure to the hydrophobic all aromatic main chain structure in the polymer body, A side chain sulfonyl poly (aryl ether ketone) proton exchange membrane (SNPAEK-xx) with only a single naphthyl group in the main chain repeat unit structure was prepared, in which the side chain sulfonyl naphthalene polyaryl ether ketone proton exchange membrane (SNPAEK-xx) was prepared. The SNPAEK-xx membrane with sulfonation degree higher than 1.30 showed excellent proton conductivity. At 80 oC, the proton conductivity was higher than 0.145S cm-1, and the maximum proton conductivity was up to 0.191 S cm-1,. The proton conductivity of Nafion membrane is better than that of Nafion membrane under the same conditions. Based on SNPAEK-xx polymers with different sulfonation degrees, the properties of side chain sulfonyl naphthyl poly (aryl ether ketone) proton exchange membrane materials were studied. In the proton exchange membrane materials, the interaction between the unique groups of planar naphthyl groups is helpful to the aggregation of hydrophobic phase regions, and thus to the formation of more obvious hydrophilic phase separation structures. The interaction of naphthyl groups among molecular chains can also improve the chemical stability of the membrane materials, enhance the mechanical properties of the membrane materials, and reduce the water absorbency of the membrane materials, based on the special action of the planar naphthyl groups. The bisnaphthyl poly (aryl ether ketone) proton exchange membrane (SDN-PAEK-x) containing two naphthyl groups in the main chain repeat unit structure was further prepared. The proton conductivity of the proton exchange membrane material was greatly improved. The results of the battery performance showed that the SDN-PAEK-1.94 proton exchange membrane material with binaphthyl structure had significantly better performance than that of the Nafion membrane. The maximum power density at 40 oC can reach 32 MW cm~ (-2), which is obviously superior to the maximum power density of 24 MW cm~ (-2) at 80 oC of Nafion film. At the same time, the maximum power density of SDN-PAEK-1.94 film at 80 oC is 60 MW cm~ (-2), which is obviously better than that of Nafion film under the same condition. It can be used as a potential proton exchange membrane material for direct methanol fuel cells. Taking into account the difference in comprehensive properties and the cost of preparation of SNPAEK-xx with a single naphthyl group and SDN-PAEK-x sulfonated polymer with a bisnaphthyl group in the repetitive unit structure of the prepared polymer chain, Firstly, a series of Nafion/SNPAEK-x composite membranes with different mass content of SNPAEK-1.35 polymers were prepared by using SNPAEK-1.35, which has good comprehensive properties and relatively low cost, as Nafion modifier and Nafion. The effect of SNPAEK-1.35Nafion modifier on the comprehensive properties of Nafion membrane was investigated. The results showed that the introduction of SNPAEK-1.35 polymer modifier in Nafion composite membrane could improve the proton conductivity of Nafion membrane. The effects of alcohol resistance and cell performance in methanol system and other properties of Nafion film were improved to some extent.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ425.236

【相似文献】

相关期刊论文 前10条

1 唐浩林,潘牧;Synthesis of Platinum Nanoparticles Modified with Nafion and the Application in PEM Fuel Cell[J];Journal of Wuhan University of Technology-Materials Science;2004年03期

2 余军;;Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell[J];Journal of Wuhan University of Technology(Materials Science Edition);2007年03期

3 Fan Luo;Shijun Liao;Dan Chen;;Platinum catalysts supported on Nafion functionalized carbon black for fuel cell application[J];Journal of Energy Chemistry;2013年01期

4 刘汉虎;Nafion-H超强酸聚合物催化剂[J];现代化工;1984年04期

5 徐通敏,沈华奎,徐晓红,徐伯兴;Nafion交换剂富集-石墨炉原子吸收法测定废水中铬[J];环境科学;1990年05期

6 ;Photophysical Behaviors of Azobenzene in Solvent-Swollen Nafion Membranes[J];Chinese Chemical Letters;1996年10期

7 ;Investigation of the Interaction between Nafion and Several Trisbipyridyl Complexes by Spectroscopic Method[J];Chinese Chemical Letters;1997年04期

8 刘晓晖,姜革;Flemion865 MIRI与Nafion NX966膜使用情况[J];氯碱工业;1997年05期

9 ;Preparation of p-1,1,3,3-Tetramethylbutylphenol by Using Nafion-H Catalyst[J];Chinese Chemical Letters;2002年04期

10 于景荣,衣宝廉,刘富强,邢丹敏,张华民;再铸Nafion膜的制备与应用[J];膜科学与技术;2002年04期

相关会议论文 前10条

1 于景荣;衣宝廉;邢丹敏;刘富强;张华民;;再铸Nafion膜的制备与电池性能评价[A];第四届中国功能材料及其应用学术会议论文集[C];2001年

2 ;The study of electro-osmotic drag of water within Nafion membrane in PEM fuel cells[A];2008 International Hydrogen Forum Programme and Abstract[C];2008年

3 余军;潘牧;袁润章;;质子交换膜燃料电池用Nafion/SiO_2复合膜结构性能研究[A];2004年中国材料研讨会论文摘要集[C];2004年

4 杨金燕;胡智怡;方军;沈培康;;磺化聚砜/Nafion复合膜的制备和表征[A];第十三次全国电化学会议论文摘要集(上集)[C];2005年

5 朱红;王明;赵婷;杨武斌;魏永生;;Nafion/SPPESK/Nafion多层复合膜的制备与表征[A];中国化学会第26届学术年会新能源与能源化学分会场论文集[C];2008年

6 金朝庆;谢凯;洪晓斌;;Li-Nafion的分子模拟——论证Li-Nafion在锂离子电池中应用的可能性[A];中国空间科学学会空间材料专业委员会2011学术交流会论文集[C];2011年

7 王飞;康天放;鲁理平;张雁;刘桐坤;;基于金微粒和Nafion膜修饰玻碳电极的对硫磷传感器[A];第五届全国环境化学大会摘要集[C];2009年

8 ;Characteristics of catalyst coated membrane with ePTFE-Nafion composite membrane for proton exchange membrane fuel cell[A];2008 International Hydrogen Forum Programme and Abstract[C];2008年

9 ;Electrochemical Behavior of Nafion~汶/Nano-TiO_2 Hybrid Membranes Under Different Conditions[A];2005年纳米和表面科学与技术全国会议论文摘要集[C];2005年

10 李涛;程琥;杨勇;;直接甲醇燃料电池用Nafion复合膜的阻醇性能研究[A];第十三次全国电化学会议论文摘要集(上集)[C];2005年

相关博士学位论文 前9条

1 鲁飞;基于离子液体及其有序分子聚集体的质子传导膜微观结构调控[D];山东大学;2015年

2 王宝龙;侧链型磺化聚芳醚酮Nafion改性剂的制备及Nafion复合膜的性能研究[D];吉林大学;2017年

3 王世铭;Nafion模板法单分散纳米粒子的合成、结构与性能研究[D];福州大学;2006年

4 潘曹峰;硅和Nafion纳米线的制备及其在纳米能源中的应用[D];清华大学;2010年

5 王强;固水界面的电化学性质及其对PEMFC的意义[D];武汉大学;2010年

6 王茹洁;自增湿超薄型及自组装型PEM的低湿性能优化[D];大连理工大学;2015年

7 李磊;直接甲醇燃料电池聚合物电解质的研究[D];天津大学;2003年

8 赵世雄;利用电场辅助制备结构取向的质子导电聚合物膜材料[D];天津大学;2013年

9 邓会宁;含有杂萘联苯的聚芳醚电解质膜研究[D];天津大学;2004年

相关硕士学位论文 前10条

1 田永梅;Nafion-有机复合膜制备与电化学性能研究[D];黑龙江大学;2006年

2 彭进才;PtCu/CeO_x/C/Nafion 电极制备及结构性能研究[D];昆明理工大学;2015年

3 宋天丹;静电纺丝制备Nafion纳米纤维的工艺及性能研究[D];北京化工大学;2015年

4 谢晶磊;复合碳纳米材料用于瘦肉精类分子的电化学传感分析[D];长沙理工大学;2014年

5 刘云龙;用于高温质子交换膜燃料电池的Nafion复合膜研究[D];天津大学;2014年

6 韩玉晶;Nafion界面电动浓集与PDMS芯片电泳联用方法研究[D];东北大学;2014年

7 郭敬轩;基于纳米金复合材料的血红蛋白传感器用于丙烯酰胺的检测研究[D];河南工业大学;2016年

8 王航;纳米纤维改性Nafion复合质子交换膜的制备与性能[D];天津工业大学;2016年

9 麦俊林;聚合物和离子液体复合体系的计算机模拟[D];华南理工大学;2016年

10 赵之婧;PtCu/CeO_x/C/Nafion膜电极制备及催化性能研究[D];昆明理工大学;2016年



本文编号:2393083

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2393083.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户26b50***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com