可见光诱导酚类化合物的官能团化研究
[Abstract]:One of the key objectives in the field of catalysis is the development of a new method of activating inert small molecules, which improves the utilization ratio of resources and energy and the synthesis efficiency of the target product in the reaction process by a new bonding mode. In the past decade, the revival of free-radical chemistry in the field of organic synthesis has also raised the researchers' interest in photochemistry. A special open-shell reactive intermediate can be produced during the photocatalytic reaction, which is difficult or even impossible to obtain under the influence of other catalysts. In addition, that light has the essential attribute of large reserves, green environment protection and renewable energy, which make the photocatalytic method accord with the requirements of the era of safety, environmental protection and green and high efficiency advocated by the modern organic chemistry. The phenolic compounds and their derivatives are a kind of very important medical intermediate and chemical raw material. Bromophenol is a common organic synthesis intermediate and plays an important role in the fields of material, medicine and pesticide. The benzo-phenylene skeleton compound which is directly synthesized by the phenolic substance has the potential biological activity, and can show various physiological functions such as anti-inflammation, anti-oxidation and anti-cancer. The benzo-VA-(1) ketone compound, which is constructed with o-aminophenol or alcohol as a raw material, has important significance in the fields of biology, medicine and pesticide, for example, the anti-AIDS drug according to the law contains the characteristic structure. In this paper, phenolic compounds are used as a central reaction substrate, and various functional groups of the phenolic compounds under normal pressure and normal pressure are studied through visible light induction, such as bromination,[3 + 2] ring addition, esterification/ deamination and direct amination. The bromination of phenolic compounds was carried out under visible light-induced conditions by using tetrabromized carbon as an oxidation-quenching agent and a bromine source, and using Ru (bpy) _ 3Cl _ 2 as a photocatalyst. The bromophenol product is considered to be the bromine simple substance generated by the in-situ oxidation of the bromide anion and the phenol are electrophilic addition. And the olefin can also generate the corresponding double bond by the bromine addition product under the same condition, which further proves the generation of the bromine simple substance in the reaction process. The method adopts the solid-state tetrabromocarbon as a bromine source, avoids the high-toxicity liquid bromine used in the conventional synthesis method, and studies a more green and environment-friendly, energy-saving and high-efficiency bromination method. using sodium persulfate as the oxidizing agent, the[3 + 2] cycloaddition reaction between the phenol and the olefin class is realized under the condition of visible light induction or heating, and a series of dihydro-benzene and the sulfur-containing compounds are obtained at a good yield, The natural product, Corsifanan A. S _ 2O _ 8 ~ (2-), was decomposed into a strong oxidizing SO2-4 ~ (路-) under the condition of light or heating, and the substrate phenol can be oxidized into phenol-oxygen free radicals to carry out the[3 + 2] cycloaddition reaction with the olefin. Compared with the severe conditions of strong acid and heavy metal used in the traditional synthesis method, the method provides a more gentle environment-friendly and economic energy-saving way. Under the condition of visible light catalysis, a series of five-membered ring or six-membered ring of benzene is synthesized by using Ru (bpy) _ 3Cl _ 2 as a photocatalyst, and a series of five-membered ring or six-membered ring-containing benzo-VA-(1) ketone compound is synthesized. And the tribromocarbon free radicals generated after the tetrabrominating carbon is involved in the oxidation quenching are directly involved in the formation of the carbon atoms in the reaction product. And the continuous flow process is adopted to realize the expansion reaction and the recovery and utilization of the photocatalyst. The synthesis method is characterized in that the carbon source in the product is derived from two different components, namely, the carbon is derived from the carbon tetrabromide and the oxygen is derived from water, and the production of highly toxic raw materials such as phosgene and the like, such as phosgene, and the like, which is used in the conventional synthesis method, is avoided. By using potassium persulfate as the oxidizing agent, the direct cross-dehydrogenation amination of the phenolic compound and the heterocyclic diphenylamine compound is realized under the condition of visible light irradiation to synthesize the reaction of the cyclic triphenylamine. The synthesis method does not need any catalyst, the reaction conditions are simple and mild, the reaction yield is high, and the chemical selectivity of the product is single. Most importantly, the method avoids the advance activation of the substrate, and generates a new carbon-nitrogen bond in a manner that the two-molecule substrate is dehydrogenated and coupled directly. The synthesis process of non-cyclic triphenylamine is further studied on the basis of the preliminary work. The direct cross-dehydrogenation amination of the phenolic compound and the non-cyclic dianiline compound under simple and mild conditions is realized under the action of the organic photocatalyst 2,4,6-triphenylamine salt, and a series of non-cyclic triphenylamine monomers are synthesized. The reaction mechanism of the double-radical cross-coupling was deduced by the fluorescence quenching experiment and the EPR test. Furthermore, by calculating the quantum yield of the reaction, there is a basic determination of the free radical chain-increasing process in the reaction. The method innovatively widens the application range of the substrate and avoids the conditions of high temperature, metal catalysis and advance activation of the reaction substrate required in the conventional amination coupling method. Both types of amination reactions are based on the free-radical cross-coupling of the free radical of the phenol and the free radicals generated by the oxidation.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O621.251
【相似文献】
相关期刊论文 前10条
1 ;胺化反应[J];化学试剂;1985年06期
2 陈立功;;醇的催化胺化反应和医药中间体[J];精细化工原料及中间体;2005年02期
3 ;灭虫宁生产中胺化反应的革新[J];医药工业;1972年02期
4 ;芳胺化反应的机理探讨及其工艺改进[J];医药工业;1977年07期
5 戴春亚;蔡良珍;赵韧;陶晓春;;N-取代乙醇胺对4-氟-1-酰基苯的选择性胺化反应[J];有机化学;2007年01期
6 杨志钢;戴伟;李宝琴;张桂英;;醇催化胺化反应的研究进展[J];化工科技市场;2009年04期
7 刘绪峰;程珍贤;;C_(60)氢胺化反应及其在制备含C_(60)功能材料中的应用[J];应用化学;2011年12期
8 刘福德,赵锡斌;溴氨酸芳胺化反应及其在染料合成中的应用[J];山西化工;1996年02期
9 陈立功,白国义;醇的催化胺化反应及其在医药中间体合成中的应用[J];精细与专用化学品;2004年17期
10 白国义,陈立功;双官能团醇类化合物催化胺化反应的研究进展[J];化学进展;2005年02期
相关会议论文 前10条
1 徐涛;慕欣;彭海辉;刘国生;;银催化的联烯的分子内氟胺化反应研究[A];中国化学会第28届学术年会第6分会场摘要集[C];2012年
2 叶洋宏;王高;陈善勇;余孝其;;钴催化的苄位C-H键直接胺化反应[A];有机合成创新—产业化的新动力——中国化学会全国第三届有机合成化学与过程学术讨论会论文摘要集[C];2010年
3 董英杰;孟子晖;崔至皓;崔可建;徐光瑞;徐志斌;;无催化剂条件下氢氧化镁促进的芳香胺化反应研究[A];2012年中国药学大会暨第十二届中国药师周论文集[C];2012年
4 郭海明;梁磊;牛红英;王东超;渠桂荣;;通过C-H活化胺化反应合成多环核苷[A];河南省化学会2012年学术年会论文摘要集[C];2012年
5 朱永法;;高能效高活性光催化剂的研究[A];第六届全国环境催化与环境材料学术会议论文集[C];2009年
6 陈红霞;;光催化剂的制备及其应用[A];第七届全国工业催化技术及应用年会论文集[C];2010年
7 周秀文;;纳米级TiO_2光催化剂的性能及应用前景[A];四川省环境科学学会2003年学术年会论文集[C];2003年
8 传秀云;;纳米组装天然多孔矿物作为TiO_2光催化剂载体应用研究[A];2004年全国太阳能光化学与光催化学术会议论文集[C];2004年
9 传秀云;;天然多孔矿物作为TiO_2光催化剂载体应用研究[A];中国矿物岩石地球化学学会第十届学术年会论文集[C];2005年
10 杨海峰;张苹;曹阳;;TiO_2光催化剂改性的研究进展[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年
相关重要报纸文章 前10条
1 本报记者 董小雷;环保技术新宠——光催化剂[N];中国化工报;2002年
2 蔡忠仁;高效光催化剂抑菌防霉[N];中国化工报;2011年
3 ;纳米固体光催化剂获发明专利[N];今日信息报;2003年
4 蔡忠仁;纳米固体光催化剂获发明专利[N];中国化工报;2003年
5 罗海基;住友化工开发出可见光型氧化钛光催化剂[N];中国有色金属报;2003年
6 记者 吴苡婷;书写“水变氢”的传奇[N];上海科技报;2011年
7 武文;二氧化钛自洁玻璃大市场正在形成[N];中华建筑报;2002年
8 ;日本开发出一种高效分解水的新型催化剂[N];中国高新技术产业导报;2002年
9 胡连荣;日本高速路的立体环保举措[N];中国环境报;2003年
10 虹影;日本开发降温新建材[N];中国房地产报;2004年
相关博士学位论文 前10条
1 赵亚婷;可见光诱导酚类化合物的官能团化研究[D];哈尔滨工业大学;2017年
2 李梦茹;经由卤键活化的N-卤代酰亚胺和炔烃的卤代/卤胺化/氧代胺化反应[D];东北师范大学;2016年
3 白国义;醇催化胺化反应的研究[D];天津大学;2003年
4 吕允贺;基于酰亚胺、脒及叔胺氮源的胺化反应研究[D];东北师范大学;2014年
5 石洪飞;新型钛基/多酸可见光催化剂的设计合成及其环境光催化性能研究[D];东北师范大学;2017年
6 滕凤;TiO_2光催化剂的改性研究及其器件化应用[D];兰州大学;2015年
7 董淑英;锌、铋系/石墨烯可见光催化剂的制备及其性能研究[D];河南师范大学;2014年
8 董红军;IVA和VB族银基复合氧化物的光催化活性及稳定性研究[D];哈尔滨工业大学;2014年
9 刘洪燕;金属纳米粒子表面等离子体光催化剂的制备、表征和光催化产氢性能研究[D];华南理工大学;2015年
10 朱艳艳;结构调控对半导体光催化活性的影响研究[D];清华大学;2015年
相关硕士学位论文 前10条
1 叶长青;醋酸钯与降冰片烯共同介导的远程非活化碳氢键的直接胺化反应研究[D];江西师范大学;2015年
2 余莲;炔酰胺和联烯酰胺的合成和反应研究[D];杭州师范大学;2015年
3 李毅;基于铜催化喹喔啉-2(1H)-酮氧化胺化反应的研究[D];华侨大学;2015年
4 姚下银;[RhCp*Cl_2]_2催化“On Water”C(sp~2)-H键胺化反应[D];南京大学;2015年
5 张治中;多卤代吡啶的选择性胺化反应[D];郑州大学;2016年
6 朱冰峰;基于铱催化的2-芳基三氮唑氮氧的C-H键磺酰胺化反应研究[D];郑州大学;2016年
7 陈腾飞;铜催化N-芳基酮亚胺基Csp~3-H键与叠氮化合物的环胺化反应研究[D];华南理工大学;2016年
8 曾慧婷;亚铜催化的苯甲酰胺和甲苯的胺化反应研究[D];华南理工大学;2016年
9 王贤彬;正辛醇的催化胺化反应的研究[D];大连理工大学;2016年
10 胡雪娇;Cp*Ir(Ⅲ)催化C-H活化胺化反应研究[D];南京大学;2017年
,本文编号:2453657
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2453657.html