多电平变换器热管理不平衡相关技术研究
[Abstract]:With the further improvement of the national demand for energy saving and emission reduction, the voltage level of the converter has been put forward new requirements for industrial production, aerospace, transportation, high voltage flexible transmission and other occasions. The multi-level converter can solve the contradiction between the voltage level of the power device and the voltage level of the converter. The output waveform is good, the fault-tolerant performance is high, and a variety of new multi-level converters topology and modulation strategies emerge in endlessly. For multilevel converters, the number of power devices increases greatly, and the number of output switching state combinations increases with the level, and there are a large number of redundant switching state combinations. The loss power imbalance of the device therefore increases correspondingly. The ideal periodic sinusoidal pulse width modulation strategy (ideal sinusoidal output current and grid voltage, stable system parameters, stable DC side voltage, The periodic modulation strategy of fixed switching frequency, etc.) is no longer applicable to the analysis and calculation of the loss power of power devices in the converter. In this paper, taking the typical power device IGBT and anti-parallel diode as the research object, based on the method of mathematical fitting data, the general calculation model of IGBT and anti-parallel diode loss power is established by MATLAB/Simulink software. Considering the influence of junction temperature and other factors, combined with the topology and modulation strategy of the converter, the loss power of each power device in the converter is calculated according to the parameters related to the device. This method is equivalent to the discrete method, according to the state of each discrete time period of the device (on state, break state), combined with the state of the discrete time period before the device, to judge the action of the device in each discrete time period (keep on state, keep off state, Turn on or off) and the corresponding loss of energy. This model is more simple and general, and has good expansibility for the new multi-level topology and modulation strategy, which is helpful to assist the loss power calculation of the new multi-level converter, reduce the cost for the production, and improve the life and reliability of the device. Model predictive control is a modulation strategy that has attracted much attention in recent years. Based on a fast model predictive control algorithm for cascade H-bridge STATCOM system, combined with the loss power calculation model previously established, the power grid voltage is quantitatively analyzed. The influence of control time and switch loss weight coefficient on the loss power of the device provides a reference range and typical value for the thermal design of equipment production. Taking this modulation strategy as an example, the loss imbalance is evaluated and measured. Finally, aiming at the phenomenon of device loss and power imbalance in multi-level converter, the application of thermoelectric refrigeration device in the cooling of multi-level converter is modeled and studied. The lifetime of power devices is closely related to the amplitude of junction temperature, the fluctuation range of junction temperature, the average junction temperature, the diameter of module bond line, the current of the device and the blocking voltage. At present, the multi-level converter adopts a kind of cooling mode, and the uneven loss of power devices will lead to uneven junction temperature distribution, which may lead to cost waste or device life and reliability reduction. Thermoelectric refrigeration devices are easy to operate and maintenance-free, and can be used as a supplementary cooling mode to reduce the fluctuation of junction temperature of power devices, reduce the working junction temperature of power devices, and even force cooling when the devices are overheated. In this paper, the energy exchange mechanism of thermoelectric refrigeration devices is deeply analyzed, and a more accurate mathematical model of thermoelectric refrigeration devices is established, which is beneficial to the research and development of thermoelectric refrigeration device control power supply and the realization of accurate temperature control. It lays a foundation for the application of this cooling method to multilevel converter products in the future.
【学位授予单位】:中国矿业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TM46
【相似文献】
相关期刊论文 前10条
1 刘学超;张波;;串联堆积式多电平变换器运行特性的实验研究[J];电源技术应用;2002年08期
2 陈阿莲,何湘宁,吴洪洋,赵荣祥;基于基本单元串-并(并-串)思想生成多电平变换器拓扑的方法[J];电工技术学报;2004年02期
3 桂红云;姚文熙;吕征宇;;多电平变换器的拓扑结构和控制策略[J];电源技术应用;2004年08期
4 李冬黎,张晋,陈阿莲,何湘宁;一种具有自修复功能的多电平变换器拓朴[J];中国电机工程学报;2005年02期
5 王琛琛;李永东;;多电平变换器拓扑研究及其最新进展[J];电力电子;2008年04期
6 李永东;饶建业;;大容量多电平变换器拓扑——现状与进展[J];电气技术;2008年09期
7 李永东;王琛琛;;大容量多电平变换器拓扑研究及其最新进展[J];自动化博览;2009年04期
8 杨晓峰;王晓鹏;范文宝;郑琼林;;模块组合多电平变换器的环流模型[J];电工技术学报;2011年05期
9 王晓鹏;杨晓峰;范文宝;郑琼林;;模块组合多电平变换器的脉冲调制方案对比[J];电工技术学报;2011年05期
10 Johannes Kolb;Felix Kammerer;Michael Braun;杨晓峰;;模块组合多电平变换器的一种新型低频运行控制方法[J];电力电子;2011年06期
相关会议论文 前10条
1 何湘宁;陈阿莲;吴洪洋;;基于基本单元串-并(并-串)思想生成多电平变换器拓扑[A];中国电工技术学会电力电子学会第八届学术年会论文集[C];2002年
2 罗华;赵世华;贺胜;郑连清;;多电平变换器拓扑结构的发展与现状[A];四川省电工技术学会第九届学术年会论文集[C];2008年
3 王琛琛;李永东;;多电平变换器拓扑研究及其最新进展[A];2008中国电工技术学会电力电子学会第十一届学术年会论文摘要集[C];2008年
4 吴洪洋;何湘宁;;高功率多电平变换器技术的研究和应用[A];面向21世纪的科技进步与社会经济发展(下册)[C];1999年
5 刘华东;张志学;张定华;唐剑钊;邓明;;模块化多电平变换器的控制研究[A];分布式发电、智能微电网与电能质量——第三届全国电能质量学术会议暨电能质量行业发展论坛论文集[C];2013年
6 张国驹;陈瑶;于蓉蓉;;模块化多电平变换器的平均值建模与控制[A];第七届中国高校电力电子与电力传动学术年会论文集[C];2013年
7 李承;石丹;郭勇;;基于单周控制的级联多电平变换器研究[A];武汉(南方九省)电工理论学会第22届学术年会、河南省电工技术学会年会论文集[C];2010年
8 熊兰;刘飞;宫金武;查晓明;;基于部分单元能量回馈的级联多电平变换器[A];第七届中国高校电力电子与电力传动学术年会论文集[C];2013年
9 万峗;刘世槎;姜建国;陈成辉;陈四雄;彭霞;;基于级联式模块化多电平变换器(MMCC)的通用分析方法及控制器设计[A];第七届中国高校电力电子与电力传动学术年会论文集[C];2013年
10 侯轩;李永东;高跃;刘永衡;;多电平变换器空间矢量合成算法及应用[A];中国电工技术学会第八届学术会议论文集[C];2004年
相关博士学位论文 前10条
1 方蒽;多电平变换器热管理不平衡相关技术研究[D];中国矿业大学;2017年
2 王畅;新型大功率级联H桥多电平变换器[D];中国矿业大学(北京);2016年
3 韩金刚;基于不对称结构的新型多电平变换器研究[D];上海海事大学;2007年
4 陈权;电压型多电平变换器若干关键技术研究[D];合肥工业大学;2007年
5 波里奥;用于电能质量管理的高效率多电平变换器[D];浙江大学;2008年
6 王俊;级联H桥多电平变换器协调控制的研究[D];中国矿业大学(北京);2015年
7 杨晓峰;模块组合多电平变换器(MMC)研究[D];北京交通大学;2012年
8 费万民;中高压功率变换相关技术的基础研究[D];浙江大学;2005年
9 范声芳;模块化多电平变换器(MMC)若干关键技术研究[D];华中科技大学;2014年
10 公铮;模块化多电平变换器优化控制技术研究[D];中国矿业大学;2017年
相关硕士学位论文 前10条
1 吕镇江;模块化多电平变换器的综合控制策略研究[D];上海交通大学;2015年
2 王庆振;模块组合多电平变换器电容均压控制系统研究[D];上海工程技术大学;2016年
3 宋莎莎;基于MMC结构的三相—单相变换器及其控制研究[D];西南交通大学;2016年
4 冯建洲;非正常工况下模块化多电平变换器的控制策略研究[D];山东大学;2016年
5 卞月娟;新型模块组合多电平变换器及其控制策略研究[D];华南理工大学;2016年
6 聂雄;模块化多电平变换器的优化控制策略研究[D];中国矿业大学;2016年
7 王金花;模块化多电平变换器模型预测控制策略研究[D];中国矿业大学;2016年
8 杨超;模块化多电平变换器环流及抑制策略研究[D];中国矿业大学;2016年
9 曹小辉;模块化多电平变换器控制策略设计与装置研究[D];湖南大学;2016年
10 赵辉;一种新型基于级联多电平变换器的储能系统研究[D];东南大学;2016年
,本文编号:2492341
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2492341.html