玉米秸秆力学特性的离散元建模方法研究
[Abstract]:As an important biomass resource, the corn straw is gradually being paid attention to by the economic times of the increasingly scarce resources. Because the corn straw has a complex and diverse internal structure, it has unique individual difference, thus presenting different mechanical properties and directly affecting the utilization of the corn straw. In this paper, the mechanical properties and the difference of each component of the corn stalk are studied deeply, and a corresponding mechanical model is established to study the change rule of the mechanical property under the action of the external load, which provides a theoretical basis for the comprehensive utilization of the maize straw and the mechanical design of the pre-treatment process. Based on the research of the physical and mechanical properties of the corn straw, the discrete element method of the maize straw is established by means of the discrete element method, which includes the following steps: A discrete element model of shear and tensile mechanical properties of a single corn straw, a discrete element model of the radial compression of a single corn straw, a discrete element model of a bending mechanical property and a bundling mechanical characteristic discrete element model of the corn straw aggregate, and the like. The paper studies the physical and mechanical properties of the maize straw, and the main research results are as follows: (1) The basic material property parameters of the corn straw are tested, and the average diameter of the corn stalk is 16.14-4.05mm. The average density of the outer skin is 0.9mm, the average density of the outer skin, the inner layer and the whole is 1.12, 0.66 and 1 g/ cm3 respectively, and the cross section diameter of the corn straw vascular bundle is 0.15 mm by the method of image processing, and the water content of the fresh corn straw is 80% by the drying method, and the moisture content of the air-dried corn straw is 8%. (2) The discrete element model of the axial shearing and mechanical properties of the corn straw outer skin is established, and the shear test and the simulation comparison are also carried out. The results of the shear test show that the average shear strength of the skin is 3.00 MPa, the average elastic modulus is 0.23 GPa, the axial shear strength and the elastic modulus of the outer skin decrease with the increase of the position of the internode, and the water content and the variety have no effect on the shear strength and the elastic modulus. The simulation results show that the mechanical characteristics of the simulation after loading the axial shear model of the corn straw outer skin are similar to that of the actual test mechanics, and the load displacement curve in the simulation is in line with the measured curve of the test, and the discrete element model parameters between the outer sheath and the pipe bundle are obtained. The values of s-bond and kn are 0.14-0.32 N and 1-106-1.2-107 N 路 m-1, respectively. (3) The discrete element model of the tensile and mechanical properties of the outer skin and the inner surface of the maize straw was established, and the comparison of the tensile test with the tensile model was also carried out. The tensile test results show that the tensile strength is 131.1-48MPa, the elastic modulus is 22.93-13GPa in the fresh state, the tensile strength is 113.42-40MPa, the elastic modulus is 15.71-6GPa, and the tensile strength of the corn straw is characterized by the brittle material. in the fresh state, the tensile strength is 1.09-0.27MPa and the elastic modulus is 0.06-0.02GPa; in the air-drying state, the tensile strength is 0.86-0.67MPa, the elastic modulus is 0.12-0.07 GPa, the tensile strength and the elastic modulus of the corn straw are reduced along with the increase of the position of the internode, and the elastic modulus is increased with the increase of the water content, The tensile strength is affected by the variety, and the tensile elastic modulus is not affected by the variety. The tensile strength of the straw in the straw is higher than that of the air-dried straw, and for the tensile elastic modulus, the air-dried straw is larger than the fresh straw, and the internode position and the variety have no significant influence on the tensile strength and the elastic modulus of the inner layer. The simulation results of the discrete element model show that the mechanical characteristic curve of the axial tensile and mechanical properties of the discrete element model of the corn straw outer skin and the inner-shell tissue are similar to those of the test characteristics. And the main mechanical property parameters of the outer skin axial model are 85.64-131.11 Pa 路 m-1 (fresh straw) and 80.53-113.42 Pa 路 m-1 (air-dried straw), and the pb-kn is 4.58-1013-1.05-1014 Pa 路 m-1 (fresh) and 3.79-131013-6.97-1013 Pa 路 m-1 (air-dried). And the discrete element parameter kn of the internal discrete element model is 0.5-106-1.5-106N 路 m-1 (air-dried) and 1.6-106-3-106N 路 m-1 (fresh), ks is 1.0-106N 路 m-1, n-bond is 5-30N (air-dried) and 35-50N (fresh), s-bond is 10-20N (air-dried) and 40-50N (fresh). (4) The discrete element model of the radial compression and mechanical properties of a single corn straw is established, and the comparison of the radial compression test with the simulation results is carried out. The simulation results of the model show that the virtual load-displacement curve mainly includes the elastic phase, the failure stage and the strengthening phase, and the virtual compression failure phenomenon and the micro-mechanical response in the compression process are analyzed, and the test results are compared with the simulation results. It is considered that the model is reasonable and is in good agreement with the actual material, and the internal binding mechanism of the corn straw under pressure is analyzed through the model. (5) A discrete element model of the bending and mechanical properties of a single corn straw is established, and the comparison of the bending test with the simulation results is carried out. The simulation results show that the curve of bending mechanics mainly includes the elastic phase and the viscoelastic phase, and the virtual bending failure and the micro-mechanical response in the compression process are analyzed. The results of the test and the simulation results are compared and analyzed, and the model is considered to be reasonable and consistent with the actual material. And the internal binding mechanism of the corn straw bending and destruction is analyzed through the model. And (6) establishing a discrete element model of a bundling mechanical property of a plurality of corn straws, and comparing the virtual bundling simulation with the test result. The relationship between the binding density and the bundling diameter is the quadratic curve, and the relationship between the rope tension and the binding diameter of the straw bundle is an exponential function. The virtual bundling simulation results in that the virtual bundling mechanical property curve is similar to the test curve, and the load of the virtual bundling simulation is in exponential function relation with the radius of the round bundle. The result of the test is the same as that of the model, which indicates that the discrete element model can be used to simulate the mechanical properties of the material in the mechanical design of the corn straw processing.
【学位授予单位】:西北农林科技大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TQ914.3
【相似文献】
相关期刊论文 前10条
1 邹中华;玉米及玉米油综述[J];粮食加工;1987年02期
2 郑国民;刘晓林;;谈谈以玉米为辅料酿制优质啤酒的几点体会[J];酿酒;1989年06期
3 秀英;玉米片的制备工艺[J];粮油食品科技;1991年02期
4 高影,兰盛斌,张华昌,王双林,李宝荣;吉林省玉米入库后损耗的研究[J];粮油仓储科技通讯;2001年03期
5 周雅芳,付金龙,汪润生;无公害玉米生产关键性技术[J];农业环境与发展;2005年01期
6 ;美国培育出秆和叶都可制取乙醇的玉米新品种[J];农业工程技术(农产品加工);2007年05期
7 郭靓;黎云祥;杨小宁;但德忠;;微量重金属元素对玉米生长影响的研究进展[J];资源开发与市场;2008年07期
8 曾洁;李新华;孙俊良;李光磊;郑煜焱;;不同玉米品种挤压膨化特性及工艺优化[J];中国粮油学报;2008年05期
9 张来林;朱彦;张爱强;朱庆芳;;玉米破碎的原因与解决措施[J];粮油食品科技;2009年01期
10 邓会超;董梅;苑昕;郑刚;高树成;王德华;刘长生;曹赞;陈百会;;玉米产后流通中减损降耗应关注的主要环节[J];粮食流通技术;2009年01期
相关会议论文 前10条
1 宋鹏飞;王甜甜;毛培;罗梅浩;;不同玉米品种丁布含量及其与抗螟性的关系[A];华中昆虫研究(第八卷)[C];2012年
2 刘祖荫;;发展玉米的加工利用技术提高玉米的综合经济效益[A];食品论文汇编[C];1985年
3 王春虎;陈士林;董娜;蒋爱凤;;豫北平原不同施氮量对玉米产量和品质的影响研究[A];中国农作制度研究进展2008[C];2008年
4 王宇翔;;玉米后期倒伏的易损性分析[A];天气、气候与可持续发展——河南省气象学会2010年年会论文集[C];2010年
5 唐红艳;;玉米品种精细化布局气象服务技术[A];第28届中国气象学会年会——S11气象与现代农业[C];2011年
6 刘治先;;我国优质专用玉米的发展策略[A];2003年全国作物遗传育种学术研讨会论文集[C];2003年
7 刘治先;;优质专用玉米的发展策略[A];’2003中国作物学会学术年会文集[C];2003年
8 孙世贤;;种植业结构调整中的玉米生产问题[A];全面建设小康社会——中国科协二○○三年学术年会农林水论文精选[C];2003年
9 刘翔;许志刚;;玉米品种对玉米细菌性枯萎病的抗性研究[A];外来有害生物检疫及防除技术学术研讨会论文汇编[C];2005年
10 李鲁华;柳延涛;吕新;朱江;;绿洲玉米生态适应性的研究[A];中国科协2005年学术年会“新疆现代农业论坛”论文专集[C];2005年
相关重要报纸文章 前10条
1 吉林食品行业管理办公室调研组;吉林玉米大省做大玉米文章[N];中国乡镇企业报;2001年
2 记者 孔非;中国国际玉米产业博览会九月在长举行[N];长春日报;2007年
3 本报记者 秦洪湖 通讯员 赵中文 肖 松;为了金色玉米香飘世界[N];中国国门时报;2006年
4 本报记者 石岩;玉米品种多 购买早筹划[N];河南科技报;2006年
5 杨婷;国家3亿补贴玉米良种玉米价格将上扬[N];中国经济时报;2007年
6 孟宝林;玉米行情看好 今年庄稼咋种[N];牡丹江日报;2006年
7 吴守祥;玉米行情火爆的背后[N];期货日报;2006年
8 吉林粮食集团副总经理 姜建华;玉米价格稳中走高[N];期货日报;2006年
9 李茜;玉米投资正当红[N];上海金融报;2008年
10 才春林;笋玉米因专用而身贵[N];农民日报;2003年
相关博士学位论文 前10条
1 石红良;我国不同年代玉米品种及其亲本自交系产量和氮效率的变化趋势[D];中国农业科学院;2014年
2 张红伟;玉米耐低磷的种质资源评价及耐低磷的遗传基础研究[D];中国农业科学院;2014年
3 刘永花;不同熟期玉米品种积温需求定量研究[D];山西农业大学;2014年
4 岳辉;玉米自交系低磷耐性遗传分析[D];沈阳农业大学;2015年
5 李春辉;玉米高密度重组图谱构建及耐旱相关性状的遗传解析[D];中国农业科学院;2015年
6 高庆华;玉米低植酸基因的初步定位和转育应用研究[D];河北农业大学;2013年
7 李圣彦;玉米萜类合成酶基因TPS10表达调控的研究[D];中国农业大学;2015年
8 翟立超;玉米品种竞争能力的评价与分析[D];中国农业大学;2015年
9 曹国鑫;小农户粮食作物高产高效技术应用限制因素及对策研究[D];中国农业大学;2015年
10 毛欣;玉米芽种钵盘精量播种机理与装置参数研究[D];黑龙江八一农垦大学;2015年
相关硕士学位论文 前10条
1 李晓瑞;黄芪绿肥的品质评价及效应分析[D];山西农业大学;2015年
2 江帆;复合Bt cry1Ac和cry1Ie抗虫玉米抗螟性及其在IRM中的作用[D];中国农业科学院;2015年
3 李秀秀;玉米耐低氮杂种优势分析[D];中国农业科学院;2015年
4 高杰;不同玉米品种的适应性分析[D];西北农林科技大学;2015年
5 刘欢;陕西及山西不同地区玉米营养价值检测与霉菌毒素污染情况分析[D];西北农林科技大学;2015年
6 李瑞敏;高地隙玉米喷雾机施药装置的设计研究[D];石河子大学;2015年
7 白翠莹;玉米ZmPROPep1基因转化及转基因抗病聚合育种[D];华中农业大学;2015年
8 吴文丽;施用三种肥料对不同复垦年限土壤Hedley磷形态及玉米产量的影响[D];山西农业大学;2015年
9 叶慧香;转cry1Ie基因抗虫玉米对土壤微生物群落结构和土壤肥力的影响研究[D];华中农业大学;2015年
10 殷鹏程;玉米株高和穗位高的QTL定位[D];华中农业大学;2015年
,本文编号:2498279
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2498279.html