基于LBM的传输过程模拟及在多孔介质中的应用研究
[Abstract]:The lattice Boltzmann method (LBM), as a mesoscopic method, is widely used in micro-scale flow and heat transfer, porous media, biological fluid, magnetic fluid, nano-fluid, multi-phase flow, In many fields, such as fuel cell, this paper provides a new approach to the mechanism of many complex phenomena. However, in the application of the laminar flow limited impact jet, the flow of the random porous medium and the heat transfer application, the LBM has insufficient and empty space, which is to be further improved and expanded. Therefore, this paper makes a useful attempt to the above-mentioned two aspects by using the LBM, and provides a new inspiration for the deep understanding of these problems, and lays a good foundation for the follow-up research work. In general, the work of this paper mainly includes: (1) the problem of four-cylinder flow around the regular and diamond-shaped arrangement is simulated based on the LBM method, and the influence of the number of Re and the spacing ratio L/ D on the flow pattern, the drag coefficient, the lift coefficient and the Nu number is revealed. The numerical simulation of the flow characteristics and the force characteristics of the four-cylinder flow around the cylinder shows that the critical L/ D is different when the flow pattern is changed under different Re number, and the average drag coefficient and the average lift coefficient change when the flow pattern is changed. These conclusions are consistent with the known study results. The results show that the number of Nu in the cylindrical surface increases rapidly with the increase of the number of Re, and the number of Nu increases with the increase of L/ D, and for the same flow pattern, The number of Nu increases with the increase of L/ D. The results of this study provide the basis for the study of the flow and heat transfer of the porous media. (2) In order to study the impact jet, this paper simulates the impact jet of plane and surface, and reveals the influence of the Reynolds number, the dimensionless impact distance H/ W on the flow characteristics and the temperature distribution characteristics of the laminar flow limited impact jet. In this paper, a new numerical simulation method of LBM is used to avoid the determination of the empirical parameters. The numerical simulation results show that, with the increase of the number of Re, the transition from the stable structure to the non-stable structure, the larger the H/ W, the smaller the critical Re number corresponding to the transition of the flow structure. The number of Nu at the stagnation point increases with the increase of the number of Re, and decreases with the increase of H/ W. In these two parameters, the Re number has a more significant effect on the heat transfer characteristics. The results of the study on the heat transfer of the jet impingement surface show that the number of Nu of the cylindrical surface increases with the angle of 0, and the number of Nu decreases gradually when the angle increases from 0 掳 to 90 掳, and the minimum value is reached at 90 掳, and the number of Nu increases with the increase of 0 from 90 掳 to 135 掳. This part of the work verifies that the LBM can accurately simulate the strong spin flow. (3) For the random porous media, the influence of the randomness of the porous structure, the particle size distribution and the particle shape on the flow and heat transfer characteristics is studied. (a) It is found that the relationship between the permeability of the porous media and the porosity of the porous media has a great difference, and the influence of the complex internal structure of the porous media is well demonstrated. In this paper, a process-based reconstruction technique is used to generate a random porous medium, and the flow field in the pore is discussed in-depth. The results show that the particle size and quantity of the porous media are the same, the dimensionless permeability K of the randomly generated porous structure is very different, and the internal porous structure has a non-negligible effect on the flow. For the two-dimensional structure, a formula for permeability K of a porous medium, which is suitable for cylindrical formation with a Gaussian distribution, is proposed. On this basis, a new b 'Den calculation formula for the Forschheimer equation is given. The effect of particle size distribution and particle shape on the three-dimensional structure is studied. When the particle size of the different particle sizes is not more than 5, the permeability increases with the increase of the particle type. The non-dimensional permeability of the spherical particles is greater than the cubic particles. At the same time, the research result of the cube is extended to the case where the length (a) of the cuboid is less than the height (b), and the permeability K decreases as a/ b increases. (b) According to a large number of literature, the correlation formula of the heat transfer coefficient of different forms of porous media is different, and even some contradictory conclusions are present. Based on this, this paper studies the heat transfer characteristics of the interior of the porous media. The results show that the size and quantity of the particles that make up the porous medium are the same, and the number of the Nu of the randomly generated porous structure is very different, and the internal porous structure has a non-negligible effect on the heat transfer. For the two-dimensional structure, the Nu number expression considering the influence of porosity is given. The effect of particle size distribution and particle shape on the three-dimensional structure is studied. When the particle size of the different particle size is not more than 5, the number of Nu decreases with the increase of the particle size. The effect of the porosity on the number of Nu is most significant for the porous media with the same particle size distribution, and the effect of the porosity on the number of the Nu is much larger than that of the spherical particles for the particles with the same particle size. In conclusion, the research work in this paper is of great significance to the in-depth understanding of the micro-scale impact jet and the flow and heat transfer characteristics of the random porous media. The research not only has important engineering application value, but also extends the research scope of the LBM in these fields.
【学位授予单位】:北京科技大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TK124
【相似文献】
相关期刊论文 前10条
1 司广树,姜培学,李勐;单相流体在多孔介质中的流动和换热研究[J];承德石油高等专科学校学报;2000年04期
2 李大鸣,张红萍,李冰绯,高永祥;多孔介质内部流动模型及其数学模拟[J];天津大学学报;2002年06期
3 王建省;非对称热渗流域多孔介质中的关键问题及研究方法[J];北方工业大学学报;2002年01期
4 施明恒,樊荟;多孔介质导热的分形模型[J];热科学与技术;2002年01期
5 李传亮;多孔介质的应力关系方程——答周大晨先生[J];新疆石油地质;2002年02期
6 苏向辉,昂海松,许锋;多孔介质传热传湿过程多层不连续问题的数值分析[J];南京航空航天大学学报;2003年01期
7 郝锦志,雷树业,王补宣,芦秋敏,马斌;多孔介质突破特性的薄层效应[J];清华大学学报(自然科学版);2004年02期
8 刘泽佳,李锡夔,武文华;多孔介质中化学 热 水力 力学耦合过程本构模型和数值模拟[J];岩土工程学报;2004年06期
9 王恩宇,程乐鸣,褚金华,施正展,骆仲泱,岑可法;渐变型多孔介质中燃气燃烧特性试验研究[J];工程热物理学报;2005年06期
10 赵治国;解茂昭;;实心与空心锥形喷雾与热多孔介质相互作用的数值研究[J];工程热物理学报;2007年02期
相关会议论文 前10条
1 胥蕊娜;姜培学;赵陈儒;黄寓理;;流体在微多孔介质中的流动研究[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
2 韦昌富;;多孔介质力学理论及其应用[A];第九届全国岩土力学数值分析与解析方法讨论会特邀报告[C];2007年
3 黄拳章;郑小平;姚振汉;;含液多孔介质力学问题的边界元法[A];中国力学学会学术大会'2009论文摘要集[C];2009年
4 饶文涛;李本文;;多孔介质燃烧技术工业应用数值模拟研究[A];2010全国能源与热工学术年会论文集[C];2010年
5 郁伯铭;员美娟;;多孔介质中流体流动的分形分析[A];中国数学力学物理学高新技术交叉研究学会第十二届学术年会论文集[C];2008年
6 郭尚平;于大森;吴万娣;;生物脏器多孔介质的孔径分布和比面[A];全国第一届生物力学学术会议论文汇编[C];1981年
7 刘志峰;赵刚;张有为;刘正锋;李柯;王晓宏;;固体颗粒在逾渗多孔介质中的吸附特性[A];第九届全国渗流力学学术讨论会论文集(一)[C];2007年
8 吴金随;尹尚先;;颗粒堆积型多孔介质内孔喉模型的研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年
9 黄拳章;郑小平;姚振汉;;用边界元法模拟含液多孔介质的等效力学行为[A];北京力学会第十六届学术年会论文集[C];2010年
10 王建省;王晓纯;;具有流固热耦合影响的可变形多孔介质动态物质面分界特征[A];“力学2000”学术大会论文集[C];2000年
相关重要报纸文章 前3条
1 中国农业大学工学院 刘相东;多孔介质干燥理论与应用并行[N];中国化工报;2007年
2 饶文涛;多孔介质燃烧新技术及应用[N];世界金属导报;2009年
3 饶文涛;新一代燃烧技术——多孔介质燃烧[N];中国冶金报;2009年
相关博士学位论文 前10条
1 张赛;多孔材料毛细孔收缩热质传递及分形特性研究[D];昆明理工大学;2015年
2 欧阳小龙;多孔介质传热局部非热平衡效应的基础问题研究[D];清华大学;2014年
3 苗同军;裂缝型多孔介质渗流特性的分形分析[D];华中科技大学;2015年
4 李琪;悬浮微小颗粒在饱和多孔介质中运移特性的理论及试验研究[D];天津大学;2014年
5 代华明;多孔介质内煤矿低浓度瓦斯燃烧波多参数耦合时空演化机理[D];中国矿业大学;2016年
6 郑佳宜;硅藻土基调湿材料内热湿迁移过程及其在建筑中的应用研究[D];东南大学;2015年
7 陈仲山;多孔介质内热质弥散及湍流预混火焰特性的双尺度研究[D];大连理工大学;2015年
8 杨培培;基于LBM的传输过程模拟及在多孔介质中的应用研究[D];北京科技大学;2017年
9 刘宏升;基于多孔介质燃烧技术的超绝热发动机的基础研究[D];大连理工大学;2008年
10 林博颖;惰性多孔介质内的液雾燃烧[D];中国科学技术大学;2008年
相关硕士学位论文 前10条
1 张洋;重金属污染物在多孔介质中的迁移模型与仿真[D];重庆大学;2012年
2 范雪晶;液体形态对颗粒堆积型多孔介质传递特性的影响[D];山东建筑大学;2015年
3 戴振宇;部分填充多孔介质通道内流体流动及传热特性研究[D];山东建筑大学;2015年
4 赵哲;颗粒堆积多孔介质干燥过程模拟及试验研究[D];陕西科技大学;2015年
5 刘璐;基于多孔介质理论的折褶滤芯数学模型研究[D];沈阳理工大学;2015年
6 王雨晴;太阳能多孔介质空气吸热器传热特性研究[D];哈尔滨工业大学;2015年
7 李晟昊;孔隙尺度下多孔介质声传播的格子Boltzmann数值模拟研究[D];大连理工大学;2015年
8 周欣欢;均质流体及多孔介质温度分布的磁共振测量[D];大连理工大学;2015年
9 朱自浩;多孔介质中天然气水合物降压分解特性研究[D];大连理工大学;2015年
10 汤凌越;多孔介质内油气混相与扩散特性实验研究[D];大连理工大学;2015年
,本文编号:2504037
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2504037.html