当前位置:主页 > 硕博论文 > 工程博士论文 >

Conceptual Design and Efficiency Optimization of Power Gener

发布时间:2021-05-17 21:37
  Due to the good neutronics,thermal hydraulics and safety characteristics of lead-based coolants,Lead-based Nuclear Energy Systems(LNESs)have generated great interest in the research field of international advanced nuclear energy systems,including the lead and lead-bismuth cooled fission reactors and the Lithium Lead(LiPb)cooled fusion reactors.Based on the high boiling point characteristics of the lead-based coolant,the core outlet temperature of the LNESs can reach above 500℃.Therefore,the LNES... 

【文章来源】:中国科学技术大学安徽省 211工程院校 985工程院校

【文章页数】:136 页

【学位级别】:博士

【文章目录】:
Abstract
Nomenclature and Acronyms
Preface
Chapter 1 Introduction
    1.1 Principle and Characteristics of Lead-based Nuclear Energy Systems
        1.1.1 Characteristics of LFR
        1.1.2 Characteristics of Fusion Reactor Blankets
    1.2 Overview of Lead-based Nuclear Energy Systems
        1.2.1 Worldwide Status of LFR
        1.2.2 Worldwide Status of Fusion Reactor Blankets
        1.2.3 Characteristics of Fusion Reactor Blankets
    1.3 Overview of Power Generation System for LNESs
        1.3.1 Overview of Power Generation System for LFR
        1.3.2 Overview of Power Generation System for DLL Blanket
    1.4 Technical Challenges and Research Objectives
    1.5 Outline of Dissertation
Chapter 2 Design Models and Methods
    2.1 Basic Principal
        2.1.1 Assumptions in Analysis of LFR Power Generation System
        2.1.2 Assumptions in Analysis of DLL Blanket of Power Generation System
    2.2 Thermodynamic Model Based on Rankine Cycle
        2.2.1 Heat Balance for Steam Generator
        2.2.2 Mass Flow Rate across Each Section
        2.2.3 Power Produced by Turbine
        2.2.4 Condenser and Feed Water Heater Power
        2.2.5 Heat Removed by Condenser
        2.2.6 Energy Balance for Feed Water Heater and Deaerator
        2.2.7 Heat Rate of Plant
        2.2.8 Total Power of Plant
        2.2.9 Thermal Efficiency of Plant
    2.3 Design Calculation for Steam Generator
        2.3.1 Mathematical Method
        2.3.2 Numerical Model
    2.4 Thermodynamic Model Based on Brayton Cycle
        2.4.1 Thermodynamic Extraction of Heat from Blanket to Brayton Cycle
        2.4.2 Power Produced by HP and LP Turbines
        2.4.3 Power Required to Compressors Ⅰ and Ⅱ
        2.4.4 Heat Extracted by Intercooler
        2.4.5 Recuperator
    2.5 Summary
Chapter 3 Conceptual Design of Power Generation System for LFR
    3.1 Design of Power Generation System
        3.1.1 Main Parameters of LFR
        3.1.2 Schematic of Power Generation System
        3.1.3 Mathematical Calculation
        3.1.4 Design Modification of Power Generation System
    3.2 Effect of Main Inlet Parameters
        3.2.1 Effect of Feed Water Temperature
        3.2.2 Effect of Steam Outlet Temperature
        3.2.3 Effect of Mass Flow Rate
    3.3 Performance Optimization of Power Generation System
        3.3.1 Description of Schematic-Ⅲ
        3.3.2 Optimization of Turbine Pressure
        3.3.3 Optimization of Condenser Back Pressure
    3.4 Part Load and Secondary Loop Performance
    3.5 Heat Rate of Plant
    3.6 Summary
Chapter 4 Analysis of Steam Generator for LFR
    4.1 Main Design Parameters of Steam Generator
        4.1.1 Design Parameters of Steam Generator
        4.1.2 Structural Material for Steam Generator
    4.2 Sizing of Steam Generator
        4.2.1 Bayonet Tube Steam Generator
        4.2.2 Design Description of Bayonet Tube Steam Generator
    4.3 Thermal Analysis on Steam Generator Performance
        4.3.1 Effect of Steam Generator Inlet Temperature on Thermal performance
        4.3.2 Effect of Inlet Temperature on Power Generation
        4.3.3 Analysis on Steam Generator Mass Flow Rate verses Power Generation
        4.3.4 Evaluation of Steam Generator Mass Flow Rate Verses Partial Load
    4.4 Summary
Chapter 5 Design of Power Generation System for DLL Blanket of FDS-II
    5.1 Design Description of Power Generation System
    5.2 Design Calculations
        5.2.1 Thermodynamic Extraction of Heat from Blanket to Brayton Cycle
        5.2.2 Power Produced by High and Low Pressure Turbines
        5.2.3 Power Required to Compressors Ⅰ and Ⅱ
        5.2.4 Heat Extracted by Intercooler
        5.2.5 Recuperator
        5.2.6 Performance Evaluation
    5.3 Optimization of Parameters and Performance Evaluation
        5.3.1 Pressure Ratio and Isentropic Efficiency
        5.3.2 Recuperator Analysis and Inlet Temperature of DLL Blanket
        5.3.3 Back Work Ratio of System
        5.3.4 Effect of Pressure
    5.4 Summary
Chapter 6 Design of Intermediate Heat Exchanger for DLL Blanket
    6.1 Concept Design of CHE
    6.2 Numerical Model and Boundary Conditions
        6.2.1 Thermal Boundary Conditions and Properties of Working Fluids
        6.2.2 Mesh Model Validation
    6.3 Thermal Performance Assessment
        6.3.1 Structure Material Evaluation
        6.3.2 Heat Transfer Performance of Structures
        6.3.3 Nusselt Number
        6.3.4 Pressure Drop
    6.4 Summary
Chapter 7 Conclusions, Implications and Future Work
    7.1 Conclusions
    7.2 Innovation
    7.3 Implications and Future Work
References
List of Publications
Achievements
Project List
Acknowledgements


【参考文献】:
期刊论文
[1]Tumor Molecular Imaging with Nanoparticles[J]. Zhen Cheng,Xuefeng Yan,Xilin Sun,Baozhong Shen,Sanjiv Sam Gambhir.  Engineering. 2016(01)
[2]铅基反应堆研究现状与发展前景[J]. 吴宜灿,王明煌,黄群英,赵柱民,胡丽琴,宋勇,蒋洁琼,李春京,龙鹏程,柏云清,刘超,周涛,金鸣,FDS团队.  核科学与工程. 2015(02)
[3]中国铅基研究反应堆概念设计研究[J]. 吴宜灿,柏云清,宋勇,黄群英,刘超,王明煌,周涛,金鸣,吴庆生,汪建业,蒋洁琼,胡丽琴,李春京,高胜,李亚洲,龙鹏程,赵柱民,郁杰,FDS团队.  核科学与工程. 2014(02)
[4]高温气冷堆氦气透平循环热工特性的初步研究[J]. 王捷.  高技术通讯. 2002(09)



本文编号:3192496

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/3192496.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户64d6e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com