Upconversion/Downconversion Optical Properties of Rare-Earth
发布时间:2023-11-03 20:24
在过去的十几年中,能源短缺和环境污染愈来愈制约着未来社会的可持续发展,太阳能等可再生能源技术代表了清洁能源的发展方向。目前所广泛使用的硅基太阳能电池其光电转换效率理论最大值仅为29%,实际转换效率约15%。太阳光之所以有很少的百分比转换为电能,原因归结于硅太阳能电池不能将全部的太阳光转换为电流。众所周知,晶体硅的带隙为1.12eV,对应光波波长为1100 nm,即只有波长小于1100 nm的太阳光才可以被晶体硅吸收并产生电子-空穴对,发生光电转换效应;而那些波长大于1100 nm的红外光则由于能量太低而不能被利用,由此造成了大约20%太阳光能量的损失。此外,硅晶体对太阳光有效响应频谱下限是400nm,波长小于400 nm的紫外光也不能被硅基太阳能电池所有效利用;另外,对于波长在400-1100 nm的太阳光,硅晶体吸收一个光子的同时只能产生一个电子—空穴对,而剩余能量通过无辐射形式传递给周围晶格并转换为热量(热化效应),该部分又损失了大约30%的太阳光能量。因此,硅基太阳能电池对太阳光谱的有效响应频谱范围有限以及热化效应的存在,成为限制硅基太阳能电池光电转换效率的重要因素。利用稀土离子...
【文章页数】:242 页
【学位级别】:博士
【文章目录】:
ACKNOWLEDGEMENTS
摘要
Abstract
List of acronyms
CHAPTER 1:INTRODUCTION
1.1. Overview
1.2. Downconversion mechanisms
1.3. Upconversion mechanisms
1.3.1. Excited State Absorption:ESA
1.3.2. Direct Two Photon Absorption:DTPA
1.3.3. Energy Transfer Upconversion:ETU
1.3.4. Cross-Relaxation:CR
1.4. Applications of the upconversion/downconversion
1.4.1. Applications in the Cancer therapy
1.4.2. Applications in the Optical imaging
1.4.3. Applications in the sensors
1.4.4. Applications in the Solar cells
1.5. Full-width at half maximum
1.6. Rare earth ions(Lanthanides)
1.6.1. 4fenergy levels of lanthanide elements
1.6.2. The Dieke diagram
1.7. Transition metalions
1.8. Judd-Ofelt Theory(J-O Theory)
1.9. Purposes of research and research methods
1.9.1. Purposes of research
1.9.2. Research methods
1.10. Materials and methods experimental
1.10.1. Experimental materials
1.10.2. Methods experimental
1.11. Performance testing of experimental samples
1.11.1. Absorption spectra test
1.11.2. Fluorescence spectra test
1.11.3. X-ray diffraction(XRD)
1.11.4. Transmission Electron Microscopy
1.11.5. Differential thermal analysis
1.12. Innovation of this research
CHAPTER 2:ENERGY TRANSFER AND UPCONVERSION EMISSION OF THE RE/Yb3+(RE:Er3+, Tb3+,Tm3+) CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICSCONTAINING Ba2LaF7 NANOCRYSTALS
2.1. Energy transfer and UC emission of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.1.1. Introduction
2.1.2. Experimental details
2.1.3. Results and discussion
2.1.4. Summary
2.2. Energy transfer and UC emission of the Tb3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.2.1. Introduction
2.2.2. Experimental details
2.2.3. Results and discussion
2.2.4. Summary
2.3. Energy transfer and UC emission of the Tm3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.3.1. Introduction
2.3.2. Experimental details
2.3.3. Results and discussion
2.3.4. Summary
CHAPTER 3:ENERGY TRANSFER AND UPCONVERSION EMISSION OF THE RE/Yb3+(RE:Tm3+,Tb3+,Er3+)TRI-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
3.1. Energy transfer and UC emission of the Tm3+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.1.1. Introduction
3.1.2. Experimental details
3.1.3. Results and discussion
3.1.4. Summary
3.2. Energy transfer and UC emission of the Er3+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.2.1. Introduction
3.2.2. Experimental details
3.2.3. Results and discussion
3.2.4. Summary
3.3. Energy transfer and UC emission of the Tm3+/Er3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.3.1. Introduction
3.3.2. Experimental deatils
3.3.3. Results and discussion
3.3.4. Summary
CHAPTER 4:EFFECT OF THE Mn2+IONS ON THE ENHANCEMENT UPCONVERSIONEMISSION INTENSITY OF THE Mn3+/RE/Yb3+ (RE=Er3+,Tm3+,Tb3+) TRI-DOPEDTRANSPARENT SILICATE GLASS-CERAMICS
4.1. Effect of the Mn2+ ions on the enhancement red UC emission intensity of the Mn2+/Er3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.1.1. Introduction
4.1.2. Experimental details
4.1.3. Results and discussion
4.1.4. Summary
4.2. Effect of the Mn2+ ions on the enhancement UC emission intensity and energy transfer of the Mn2+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.2.1.Introduction
4.2.2. Experimental details
4.2.3. Results and discussion
4.2.4. Summary
4.3. Effect of the Mn2+ ions on the enhancement UC emission intensity and energy transfer of the Mn2+/Tm3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.3.1. Introduction
4.3.2. Experimental details
4.3.3. Results and discussion
4.3.4. Summary
CHATER 5:EFFECT OF METALLIC NANOPARTICLES(MNPs:M=Au,Ag,Cu)ON THEENHANCEMENT UPCONVERSION EMISSION INTENSITY OF THE RE/Yb3+ (RE=Tm3+,Tb3+,Er3+)CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
5.1. Effect of Gold Nanoparticles on the enhancement UC emission intensity of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
5.1.1. Introduction
5.1.2. Experimental details
5.1.3. Results and discussion
5.1.4. Summary
5.2. Effect of Silver Nanoparticles on the enhancement UC emission intensity of the Tm3+/Er3+/Yb3+ transparent silicate glass-ceramics containing BaF2 nanocrystals
5.2.1. Introduction
5.2.2. Experimental details
5.2.3. Results and discussion
5.2.4. Summary
5.3. Effect of Copper Nanoparticles on the enhancement UC emission intensity of the Tb3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
5.3.1. Introduction
5.3.2. Experimental details
5.3.3. Results and discussion
5.3.4. Summary
CHAPTER 6:DOWNCONVERSION EMISSION OF THE RE/Yb3+ (RE:Er3+,Nd3+,Pr3+)CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
6.1. Downconversion emission of the Nd3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.1.1. Introduction
6.1.2. Experimental details
6.1.3. Results and discussion
6.1.4. Summary
6.2. Downconversion emission of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
6.2.1. Introduction
6.2.2. Experimental details
6.2.3. Results and discussion
6.2.4. Summary
6.3. Downconversion emission of the Pr3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.3.1. Introduction
6.3.2. Experimental details
6.3.3. Results and discussion
6.3.4. Summary
6.4. Effect of Silver nanoparticle on the enhancement DC emission intensity of Nd3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.4.1. Introduction
6.4.2. Experimental details
6.4.3. Results and discussion
6.4.4. Summary
6.5. Effect of Gold Nanoparticle on the enhancement DC emission intensity of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
6.5.1. Introduction
6.5.2. Experimental details
6.5.3. Results and discussion
6.5.4. Summary
CHAPTER 7:CONCLUSIONS AND FUTURE WORKS
7.1. Conclusions
7.2. Future works
APPENDIX:PAPERS PUBLISHED DURING THE DOCTORAL STUDENT
REFERENCES
本文编号:3859840
【文章页数】:242 页
【学位级别】:博士
【文章目录】:
ACKNOWLEDGEMENTS
摘要
Abstract
List of acronyms
CHAPTER 1:INTRODUCTION
1.1. Overview
1.2. Downconversion mechanisms
1.3. Upconversion mechanisms
1.3.1. Excited State Absorption:ESA
1.3.2. Direct Two Photon Absorption:DTPA
1.3.3. Energy Transfer Upconversion:ETU
1.3.4. Cross-Relaxation:CR
1.4. Applications of the upconversion/downconversion
1.4.1. Applications in the Cancer therapy
1.4.2. Applications in the Optical imaging
1.4.3. Applications in the sensors
1.4.4. Applications in the Solar cells
1.5. Full-width at half maximum
1.6. Rare earth ions(Lanthanides)
1.6.1. 4fenergy levels of lanthanide elements
1.6.2. The Dieke diagram
1.7. Transition metalions
1.8. Judd-Ofelt Theory(J-O Theory)
1.9. Purposes of research and research methods
1.9.1. Purposes of research
1.9.2. Research methods
1.10. Materials and methods experimental
1.10.1. Experimental materials
1.10.2. Methods experimental
1.11. Performance testing of experimental samples
1.11.1. Absorption spectra test
1.11.2. Fluorescence spectra test
1.11.3. X-ray diffraction(XRD)
1.11.4. Transmission Electron Microscopy
1.11.5. Differential thermal analysis
1.12. Innovation of this research
CHAPTER 2:ENERGY TRANSFER AND UPCONVERSION EMISSION OF THE RE/Yb3+(RE:Er3+, Tb3+,Tm3+) CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICSCONTAINING Ba2LaF7 NANOCRYSTALS
2.1. Energy transfer and UC emission of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.1.1. Introduction
2.1.2. Experimental details
2.1.3. Results and discussion
2.1.4. Summary
2.2. Energy transfer and UC emission of the Tb3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.2.1. Introduction
2.2.2. Experimental details
2.2.3. Results and discussion
2.2.4. Summary
2.3. Energy transfer and UC emission of the Tm3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
2.3.1. Introduction
2.3.2. Experimental details
2.3.3. Results and discussion
2.3.4. Summary
CHAPTER 3:ENERGY TRANSFER AND UPCONVERSION EMISSION OF THE RE/Yb3+(RE:Tm3+,Tb3+,Er3+)TRI-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
3.1. Energy transfer and UC emission of the Tm3+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.1.1. Introduction
3.1.2. Experimental details
3.1.3. Results and discussion
3.1.4. Summary
3.2. Energy transfer and UC emission of the Er3+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.2.1. Introduction
3.2.2. Experimental details
3.2.3. Results and discussion
3.2.4. Summary
3.3. Energy transfer and UC emission of the Tm3+/Er3+/Yb3+ tri-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
3.3.1. Introduction
3.3.2. Experimental deatils
3.3.3. Results and discussion
3.3.4. Summary
CHAPTER 4:EFFECT OF THE Mn2+IONS ON THE ENHANCEMENT UPCONVERSIONEMISSION INTENSITY OF THE Mn3+/RE/Yb3+ (RE=Er3+,Tm3+,Tb3+) TRI-DOPEDTRANSPARENT SILICATE GLASS-CERAMICS
4.1. Effect of the Mn2+ ions on the enhancement red UC emission intensity of the Mn2+/Er3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.1.1. Introduction
4.1.2. Experimental details
4.1.3. Results and discussion
4.1.4. Summary
4.2. Effect of the Mn2+ ions on the enhancement UC emission intensity and energy transfer of the Mn2+/Tb3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.2.1.Introduction
4.2.2. Experimental details
4.2.3. Results and discussion
4.2.4. Summary
4.3. Effect of the Mn2+ ions on the enhancement UC emission intensity and energy transfer of the Mn2+/Tm3+/Yb3+ tri-doped transparent silicate glass-ceramics
4.3.1. Introduction
4.3.2. Experimental details
4.3.3. Results and discussion
4.3.4. Summary
CHATER 5:EFFECT OF METALLIC NANOPARTICLES(MNPs:M=Au,Ag,Cu)ON THEENHANCEMENT UPCONVERSION EMISSION INTENSITY OF THE RE/Yb3+ (RE=Tm3+,Tb3+,Er3+)CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
5.1. Effect of Gold Nanoparticles on the enhancement UC emission intensity of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
5.1.1. Introduction
5.1.2. Experimental details
5.1.3. Results and discussion
5.1.4. Summary
5.2. Effect of Silver Nanoparticles on the enhancement UC emission intensity of the Tm3+/Er3+/Yb3+ transparent silicate glass-ceramics containing BaF2 nanocrystals
5.2.1. Introduction
5.2.2. Experimental details
5.2.3. Results and discussion
5.2.4. Summary
5.3. Effect of Copper Nanoparticles on the enhancement UC emission intensity of the Tb3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
5.3.1. Introduction
5.3.2. Experimental details
5.3.3. Results and discussion
5.3.4. Summary
CHAPTER 6:DOWNCONVERSION EMISSION OF THE RE/Yb3+ (RE:Er3+,Nd3+,Pr3+)CO-DOPED TRANSPARENT SILICATE GLASS-CERAMICS
6.1. Downconversion emission of the Nd3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.1.1. Introduction
6.1.2. Experimental details
6.1.3. Results and discussion
6.1.4. Summary
6.2. Downconversion emission of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
6.2.1. Introduction
6.2.2. Experimental details
6.2.3. Results and discussion
6.2.4. Summary
6.3. Downconversion emission of the Pr3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.3.1. Introduction
6.3.2. Experimental details
6.3.3. Results and discussion
6.3.4. Summary
6.4. Effect of Silver nanoparticle on the enhancement DC emission intensity of Nd3+/Yb3+ co-doped transparent silicate glass-ceramics containing Ba2LaF7 nanocrystals
6.4.1. Introduction
6.4.2. Experimental details
6.4.3. Results and discussion
6.4.4. Summary
6.5. Effect of Gold Nanoparticle on the enhancement DC emission intensity of the Er3+/Yb3+ co-doped transparent silicate glass-ceramics containing BaF2 nanocrystals
6.5.1. Introduction
6.5.2. Experimental details
6.5.3. Results and discussion
6.5.4. Summary
CHAPTER 7:CONCLUSIONS AND FUTURE WORKS
7.1. Conclusions
7.2. Future works
APPENDIX:PAPERS PUBLISHED DURING THE DOCTORAL STUDENT
REFERENCES
本文编号:3859840
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/3859840.html