莺琼盆地中深层地震数据精确成像方法
本文关键词:莺琼盆地中深层地震数据精确成像方法 出处:《吉林大学》2016年博士论文 论文类型:学位论文
更多相关文章: 宽方位采集 复杂介质 层析成像 速度建模 射线束 叠前深度偏移
【摘要】:莺琼盆地崎岖海底及中深层地质条件复杂,中深部存在多套超低速层和异常高压,而且地层垂向裂隙发育等,诸多因素造成中深层地震资料采集的低信噪比、准确的速度建模很困难,精确的构造成像和保真成像难以实现,严重地影响着莺琼盆地的油气勘探效果。针对莺琼盆地油气勘探面临的上述成像方面的挑战,本论文首先分析了莺琼盆地油气勘探遇到的关键的地震地质问题。指出在理论上必须从数据、速度建模成像一体化的思路出发,提出新的方法理论,在应用上则需要立足于高质量的采集,开发面对该探区有特色的成像和速度估计方法才能有效解决该探区的问题。基于此,在观测系统设计方面,提出了面向目的层成像效果的观测系统优选方案。针对莺琼盆地某工区三维地震地质模型,基于不同类型观测系统下的目的层三维射线追踪模拟偏移振幅照明分析,优选出满足提高莺琼盆地中深层地震数据精确成像要求的全方位观测系统类型。在成像方法方面,提出了聚束理论下射线束成像方法。首先在数据分解上引入基于反演的局部平面波合成,改进了传统射线束传播的宽度控制,并发展到TI介质和吸收衰减介质,最后形成了一种基于弱信号保护的特色射线束成像方法。在速度估计方面,提出基于简化高斯束敏感核函数的射线束层析方法。具体包括优化了高斯束初值的选择和引入菲涅尔带确定核函数宽度。结合射线束角度域成像和层析,论文提出了莺琼盆地以射线束角度道集输出和射线束层析为核心的速度估计流程,并成功应用于实际资料。论文通过在采集系统设计,成像和速度估计方面进行研究,提出了针对该探区的一套采集和成像处理流程。在具体的章节中,第一章主要是介绍了本文的研究背景和意义,并分析了当前国内外在成像和速度估计方面的研究进展,指出了本文研究思路和主要研究内容。第二章主要是从采集和处理方面分析莺歌海地区的地震地质问题,并结合当前地震勘探主流的成像和速度估计方法特点,探索了该探区中深层勘探适用的技术流程。第三章主要从目的层深度、AVO分析、动校正拉伸、速度分析解读以及反射系数稳定性等因数论证了工区三维采集的电缆长度,重点针对莺琼盆地中深层高精度地震成像对于数据采集的要求,在对不同类型采集观测系统几何参数进行分析对比基础上,选取莺琼盆地某工区三维地震地质模型,基于射线追踪模拟偏移振幅照明分析手段对海上拖缆NAZ、MAZ、WAZ、RAZ以及FAZ五种观测系统进行对比分析,优选出适合琼盆地中深层高精度地震勘探要求的全方位观测系统类型,该观测系统在目的层上的照明能量的连续性和均匀性最好,能够有效地改善阴影区的照明效果,是一种满足提高莺琼盆地中深层地震数据精确成像要求的理想观测系统。第四章针对莺琼盆地中深层地震信号较弱的基本特点,提出聚束理论下的射线束成像方法,即在聚束理论框架下提出基于反演进行射线束合成,基于简化的高斯束传播算子进行宽度可控的射线束传播和成像。同时开发相关代码形成了相应的处理软件模块,应用于实际资料处理,对弱信号模糊区成像效果改善明显。第五章为了适应中深层复杂介质成像的要求,发展了各向异性介质和吸收衰减介质中的聚束成像方法技术,各向异性成像方面提出基于相速度的旅行时计算方法,吸收衰减介质成像方面引入多尺度Gabor(MGT)变化进行有效的相位和振幅补偿。模型测试和实际资料测试证明本章方法在莺歌海探区中深层天然气浸染区域中吸收衰减补偿地震波成像的有效性。第六章提出基于简化高斯束敏感核函数的射线束层析方法,发展了射线束层析速度反演技术。具体分析了层析速度反演中的关键问题和局限性,优化了高斯束初值的选择和引入菲涅尔带确定核函数宽度。结合射线束角度道集输出,提出了角度域射线束层析速度反演和建模的技术路线并讨论了具体实现中的问题,并成功应用于靶区实际资料处理,效果明显。最后一章是对全文的总结和讨论了论文研究内容相关的后续研究工作。本论文针对我国莺歌海海洋深水区中深层地震资料成像问题,从采集开始到速度建模及复杂介质成像提出了一套有效的技术流程,在实际数据测试过程中完善了其中涉及的若干关键技术。该技术流程的应用提高了中深层成像的精度,为目标探区的后续开发提供了有效的技术支撑。
[Abstract]:Yingqiong basin and deep rough sea in complex geological conditions, deep have multiple sets of ultra low velocity layer and abnormal high pressure, and the vertical cracks, caused by many factors in the deep seismic data acquisition with low signal-to-noise ratio, difficult accurate velocity modeling, structural imaging and fidelity accurate imaging is difficult to achieve, serious affect the effect of Yingqiong basin oil and gas exploration. In view of the above imaging challenges faced by Yingqiong basin, this paper first analyzes the key seismic and geological problems encountered in oil and gas exploration in Yingqiong basin. In theory, we must proceed from the idea of the data integration of imaging velocity model, put forward the theory of the new method in the application will need to be based on the high quality of the acquisition, development and speed in the area facing the imaging characteristic estimation method can effectively solve the problems in the area. Based on this, in the aspect of the design of the observation system, the optimization scheme of the observation system for the purpose layer imaging effect is proposed. In Yingqiong Basin an area 3D seismic geological model, simulation of offset amplitude for different types of observation lighting system under the objective layer 3D ray tracing analysis based on optimized improve all-round observation system of deep seismic data accurate imaging requirements of Yingqiong basin. In the imaging method, a beam beam imaging method based on the theory of bunching is proposed. First, the inversion based local plane wave synthesis is introduced, which improves the width control of the traditional beam propagation and develops into the TI medium and the absorption and attenuation medium. Finally, a characteristic beam imaging method based on weak signal protection is formed. In terms of velocity estimation, a ray beam chromatography method based on the simplified Gauss beam sensitive kernel function is proposed. Specifically, the selection of the initial value of the Gauss beam and the introduction of the Finel band to determine the width of the kernel function are introduced. Combined with ray beam angle domain imaging and tomography, a speed estimation process based on ray beam angle gather output and ray beam tomography is proposed in Yingqiong basin, and is successfully applied to actual data. By studying the design of the acquisition system, imaging and speed estimation, a collection and imaging process for the area is proposed. In the specific chapters, the first chapter mainly introduces the research background and significance of this paper, and analyzes the research progress of imaging and speed estimation both at home and abroad, and points out the research train of thought and main research contents in this paper. The second chapter is the analysis of seismic geological problems in Yinggehai region from acquisition and processing, and combined with the current method and seismic velocity imaging features of mainstream estimates, explores the technical process for deep exploration in the area. The third chapter mainly from the objective layer depth, AVO analysis, dynamic correction stretching and velocity analysis and reflection coefficient of stability factor demonstrates the length of the cable area 3D acquisition, focusing on high precision imaging for deep seismic data acquisition requirements of Yingqiong basin, in the different types of acquisition system based on the comparison analysis of geometric parameters select an area, Yingqiong basin seismic geological model, comparative analysis of ray tracing simulation analysis method of amplitude offset lighting marine streamer NAZ, MAZ, WAZ, RAZ and FAZ five kinds of observation system based on optimized for types of deep high precision seismic exploration for comprehensive observation system in the Qiongdongnan Basin, lighting energy objective observing system in layers on the continuity and uniformity of the best, can effectively improve the lighting effect of the shadow region, is a kind of satisfaction improve Yingqiong An ideal observation system for accurate imaging of deep seismic data in the basin. In the fourth chapter, the basic characteristics of Yingqiong Basin deep seismic signal is weak, the poly beam imaging method of beam theory, is proposed for beam synthesis based on inversion in the beam theory, the width of the controllable Gauss beam propagation operator based on the simplified ray beam propagation and imaging. At the same time, the related code is developed to form the corresponding processing software module, which is applied to the actual data processing, and the imaging effect of the weak signal blurred area is improved obviously. In the fifth chapter, medium imaging demands deep and complex adaptation, the development of the anisotropic media and absorption attenuation spotlight imaging method in anisotropic medium, the phase velocity imaging method based on the calculation of travel, medium attenuation imaging into multi-scale Gabor (MGT) phase and amplitude compensation effectively change. Model test and real data test prove the effectiveness of this method of seismic wave absorption and attenuation compensation imaging in deep gas exploration area in the Yinggehai region in dip. In the sixth chapter, a ray beam tomography method based on the simplified Gauss beam sensitive kernel function is proposed, and the ray beam tomography velocity inversion technique is developed. The key problems and limitations in the tomography velocity inversion are analyzed, the selection of the initial value of Gauss beam and the introduction of the Finel band to determine the width of the kernel function are optimized. Combined with the output of ray beam angle gather, we put forward the technology route of angle domain beam tomography velocity inversion and modeling, and discussed the problems in the implementation, and successfully applied to the actual data processing of target area, the effect is obvious. The last chapter is a summary of the full text and a discussion of the follow-up work related to the content of the thesis. This thesis focuses on the deepwater area of our country in the Yinggehai deep seismic data imaging, collected from start to speed modeling and imaging in complex media and put forward a set of effective technological process, in the actual data in the testing process to improve the involved key technology. The application of this technological process improves the accuracy of middle depth imaging, and provides an effective technical support for the follow-up development of the target exploration area.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:P631.4
【参考文献】
相关期刊论文 前10条
1 谢玉洪;张迎朝;李绪深;朱建成;童传新;钟泽红;周家雄;何胜林;;莺歌海盆地高温超压气藏控藏要素与成藏模式[J];石油学报;2012年04期
2 裴健翔;于俊峰;王立锋;郝德峰;刘峰;;莺歌海盆地中深层天然气勘探的关键问题及对策[J];石油学报;2011年04期
3 谢玉洪;范彩伟;;莺歌海盆地东方区黄流组储层成因新认识[J];中国海上油气;2010年06期
4 李绪宣;温书亮;尹成;;深水崎岖海底区不同采集方向地震波照明能量分布特征研究[J];中国海上油气;2010年02期
5 杨凯;李列;;深水崎岖海底对下伏地层反射波特征的影响分析[J];工程地球物理学报;2010年01期
6 李添才;陈瑜;葛勇;李列;许自强;吴耀乐;刘洋波;;Q海深水长排列地震数据处理技术[J];海洋地质动态;2010年01期
7 刘玉柱;董良国;夏建军;;初至波走时层析成像中的正则化方法[J];石油地球物理勘探;2007年06期
8 钟志洪,王良书,李绪宣,夏斌,孙珍,张敏强,吴国干;琼东南盆地古近纪沉积充填演化及其区域构造意义[J];海洋地质与第四纪地质;2004年01期
9 吴如山,金胜汶,谢小碧;广义屏传播算子及其在地震波偏移成像方面的应用[J];石油地球物理勘探;2001年06期
10 张启明;莺—琼盆地的演化与构造—热体制[J];天然气工业;1999年01期
,本文编号:1344985
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/1344985.html