ɾʧʧЧʱ¼äÊý¾ÝµÄ»Ø¹é·ÖÎö
±¾ÎĹؼü´Ê£ºÉ¾Ê§Ê§Ð§Ê±¼äÊý¾ÝµÄ»Ø¹é·ÖÎö¡¡³ö´¦£º¡¶¼ªÁÖ´óѧ¡·2017Ä격ʿÂÛÎÄ¡¡ÂÛÎÄÀàÐÍ£ºÑ§Î»ÂÛÎÄ
¸ü¶àÏà¹ØÎÄÕ£º ÏàÒÀɾʧ Çø¼äɾʧÊý¾Ý Ë«ÖØɾʧÊý¾Ý ±ÈÀý·çÏÕÄ£ÐÍ frailtyÄ£ÐÍ ×ª»»Ä£ÐÍ EMËã·¨ ²´ËÉËæ»ú±äÁ¿
¡¾ÕªÒª¡¿£º½üÄêÀ´,ɾʧÊý¾ÝµÄͳ¼Æ·ÖÎöÒýÆðÁËѧÕߵĹ㷺¹Ø×¢,ÕâÖÖÊý¾Ý´æÔÚÓںܶà¿ÆѧÑо¿ÁìÓò,°üÀ¨Ò½Ñ§¡¢ÈË¿ÚѧºÍÉç»áѧµÈ.±¾ÎĵÄÑо¿ÄÚÈÝÖ÷Òª·ÖΪÈý¸ö·½Ãæ,·Ö±ðΪ´øÏàÒÀɾʧʱ¼äµÄ1ÐÍÇø¼äɾʧÊý¾ÝµÄ»Ø¹é·ÖÎö¡¢°ë²ÎÊýת»»frailtyÄ£ÐÍ϶àÔª1ÐÍÇø¼äɾʧÊý¾ÝµÄ»Ø¹é·ÖÎöºÍ°ë²ÎÊýת»»Ä£ÐÍÏÂË«ÖØɾʧÊý¾ÝµÄ»Ø¹é·ÖÎö.Ê×ÏÈ,Õë¶Ô´øÏàÒÀɾʧʱ¼äµÄ1ÐÍÇø¼äɾʧʧЧʱ¼äÊý¾Ý,ÎÒÃÇÌá³öʹÓÃfrailtyÄ£ÐÍÀ´¿Ì»É¾Ê§Ê±¼äºÍʧЧʱ¼äµÄÏà¹Ø¹Øϵ.ÆäÖÐ,ÎÒÃÇʹÓõ¥µ÷ÑùÌõº¯ÊýÀ´±Æ½üʧЧʱ¼äÄ£ÐÍÖеĻùÏßÀÛ»ý·çÏÕº¯Êý²¢Ìá³öÒ»ÖÖ»ùÓÚ²´ËÉËæ»ú±äÁ¿µÄEMËã·¨À´µÃµ½²ÎÊýµÄ¼«´óËÆÈ»¹À¼Æ.´ËʱµÃµ½µÄ¹À¼ÆÁ¿¾ßÓÐÏàºÏÐÔ¡¢½¥½üÕý̬ÐÔºÍÓÐЧÐÔ.ÊýֵģÄâºÍÀ´×ÔСÊóÖ×ÁöʵÑéµÄʵÀý¾ùÑéÖ¤Á˸ÃÄ£Ðͼ°ÏàÓ¦¹À¼Æ·½·¨µÄʵ¼ÊÓ¦ÓüÛÖµ.Æä´Î,ÎÒÃÇÌÖÂÛÁË°ë²ÎÊýת»»frailtyÄ£ÐÍ϶àÔª1ÐÍÇø¼äɾʧÊý¾ÝµÄ»Ø¹é·ÖÎöÎÊÌâ.ÎÒÃÇͨ¹ýfrailtyµÄÀÆÕÀ˹±ä»»½«×ª»»frailtyÄ£Ðͱ任Ϊ´øÓÐÁ½ÖØfrailtyµÄ±ÈÀý·çÏÕÄ£ÐÍ,²¢Ìá³öÒ»ÖÖ»ùÓÚ²´ËÉËæ»ú±äÁ¿µÄEMMËã·¨À´½øÐвÎÊý¹À¼Æ.ÆäÖÐ,ÔÚÆÚÍû²½,ÎÒÃÇÁªºÏʹÓøÅÂÊ»ý·Ö±ä»»ºÍ¸ß˹Õý½»·½·¨À´¼ÆËã¹ØÓÚfrailtyµÄÌõ¼þÆÚÍû.´ËʱµÃµ½µÄ¹À¼ÆÁ¿¾ßÓÐÏàºÏÐÔ¡¢½¥½üÕý̬ÐÔºÍÓÐЧÐÔ.ÎÒÃÇͨ¹ýÊýֵģÄâÑéÖ¤Á˸ùÀ¼Æ·½·¨µÄºÏÀíÐÔ,²¢½«ËùÌá³öµÄÄ£Ðͼ°ÏàÓ¦¹À¼Æ·½·¨Ó¦ÓÃÓÚ¹ØÓÚÒÂÔÌåºÍÁܲ¡µÄʵ¼ÊÊý¾ÝÖÐ.×îºó,ÎÒÃÇÑо¿ÁË°ë²ÎÊýת»»Ä£ÐÍÏÂË«ÖØɾʧÊý¾ÝµÄ»Ø¹é·ÖÎöÎÊÌâ.ÎÒÃÇͨ¹ýfrailtyµÄÀÆÕÀ˹±ä»»½«×ª»»Ä£Ðͱ任Ϊ±ÈÀý·çÏÕfrailtyÄ£ÐÍÒÔ¼ò»¯¹À¼ÆÎÊÌâ,ͬʱÌá³öÒ»ÖÖ»ùÓÚ²´ËÉËæ»ú±äÁ¿µÄEMËã·¨½øÐвÎÊý¹À¼Æ,²¢Ö¤Ã÷Á˹À¼ÆÁ¿µÄ½¥½üÐÔÖÊ,°üÀ¨ÏàºÏÐÔ¡¢½¥½üÕý̬ÐÔºÍÓÐЧÐÔ.ÎÒÃÇͨ¹ýÊýֵģÄâÑéÖ¤Á˹À¼ÆµÄЧ¹ûºÍ¾«È·ÐÔ,²¢½«Ìá³öµÄÄ£ÐÍÄâºÏÁ˹ØÓÚ°¬×̲¡µÄÁÙ´²ÊÔÑéÊý¾Ý.
[Abstract]:In recent years, the statistical analysis of censored data has attracted wide attention of scholars. This kind of data exists in many fields of scientific research, including medicine, demography and sociology. The research content of this paper is mainly divided into three aspects. The regression analysis of type 1 interval censored data with dependent censored time was presented. Regression analysis of multivariate 1-type interval censored data under semi-parametric conversion frailty model and double-censored data regression under semi-parametric transformation model. First. For the data of type 1 interval censored failure time with dependent censored time, we propose to use frailty model to describe the correlation between censored time and failure time. We use the monotone spline function to approximate the baseline cumulative risk function in the failure time model and propose an EM algorithm based on Poisson random variables to obtain the maximum likelihood estimation of the parameters. Consistency. The asymptotic normality and validity. The numerical simulation and the examples from mouse tumor experiments verify the practical application value of the model and the corresponding estimation method. Secondly. In this paper, we discuss the regression analysis of interval censored data of multivariate type 1 under semi-parametric converted frailty model. We transform the frailty model by frailty's Laplace transform. Is a proportional risk model with double frailty. A EMM algorithm based on Poisson random variables is proposed to estimate the parameters. We use probabilistic integral transform and Gao Si orthogonal method to calculate the conditional expectation of frailty. Asymptotic normality and validity. The rationality of the proposed method is verified by numerical simulation, and the proposed model and the corresponding estimation method are applied to the actual data on chlamydia and gonorrhea. Finally. We study the regression analysis of double censored data under semi-parametric transformation model. We transform the transformation model into proportional risk frailty model by Laplace transform of frailty to simplify the estimation. The problem. At the same time, an EM algorithm based on Poisson random variables is proposed to estimate the parameters, and the asymptotic properties of the estimator, including consistency, are proved. Asymptotic normality and validity. The effectiveness and accuracy of the estimation are verified by numerical simulation and the data of clinical trials on AIDS are fitted by the proposed model.
¡¾Ñ§Î»ÊÚÓ赥λ¡¿£º¼ªÁÖ´óѧ
¡¾Ñ§Î»¼¶±ð¡¿£º²©Ê¿
¡¾Ñ§Î»ÊÚÓèÄê·Ý¡¿£º2017
¡¾·ÖÀàºÅ¡¿£ºO212.1
¡¾ÏàËÆÎÄÏס¿
Ïà¹ØÆÚ¿¯ÂÛÎÄ Ç°10Ìõ
1 ÐìÓ;¶¡°î¿¡;;ɾʧÊý¾Ýϼ¸ÖÖÁ½Ñù±¾¼ìÑéµÄ¹¦Ð§Ñо¿[J];ÊýÀíͳ¼ÆÓë¹ÜÀí;2011Äê01ÆÚ
2 ÂÀÇïƼ;µËÎÄÀö;;Çø¼äɾʧÊý¾Ýº¯ÊýµÄ¾ùÖµ¹À¼Æ[J];½Î÷ʦ·¶´óѧѧ±¨(×ÔÈ»¿Æѧ°æ);2011Äê01ÆÚ
3 ÐìÓÀºì;¸ßÏþ»¶;ÍõÕýÎõ;;º¬ÓÐÓÒɾʧºÍÇø¼äɾʧÊý¾ÝµÄÉú´æº¯ÊýµÄ·Ç²ÎÊý¹À¼Æ[J];ÉúÎïҽѧ¹¤³ÌѧÔÓÖ¾;2014Äê02ÆÚ
4 ¾ÏÈðÄê;Ñî·¼;¿×´ä´ä;;»ùÓÚËæ»úɾʧÊý¾ÝÏÂÒ»ÖÖÐÂÄ£ÐͶÔÈí¼þ×ÜÌå¿É¿¿¶ÈµÄ¹À¼Æ[J];ÄÏÑôʦ·¶Ñ§ÔºÑ§±¨;2008Äê03ÆÚ
5 ¿ÂÈØ;;¹úÄÚɾʧÊý¾Ýͳ¼ÆÑо¿×´¿ö×ÛÊö[J];ͳ¼ÆÓëÐÅÏ¢ÂÛ̳;2008Äê10ÆÚ
6 ÓáÑ©Àæ,Ф¸Ù¾°;Ï¡ÓÐʼþÓÒɾʧÉú´æÊý¾ÝµÄÉ¡ÐÎÔ¼Êø¼ìÑé[J];½ÄÏ´óѧѧ±¨;2004Äê06ÆÚ
7 Öì³ÉÁ«;;´øÓÒɾʧÊý¾ÝµÄ·ÇÏßÐÔÄ£Ð͵IJÎÊý¹À¼Æ[J];ͳ¼ÆÓë¾ö²ß;2009Äê14ÆÚ
8 Ñî¾ü;;Çø¼äɾʧÊý¾ÝϲÎÊý¹À¼ÆµÄ±È½Ï[J];½Î÷¿Æѧ;2012Äê01ÆÚ
9 ÖÜÓ£¬£¬°²ºèÖ¾;ɾʧÊý¾Ýƽ»¬·Ç²ÎÊý·Öλ¹À¼Æ[J];Ó¦ÓÃÊýѧѧ±¨;1996Äê01ÆÚ
10 ÍõÄËÉú;¶àÖØ¢òÐÍɾʧÊý¾ÝµÄ½üËÆËÆÈ»º¯Êý¼°Ó¦ÓÃ[J];¸ßУӦÓÃÊýѧѧ±¨A¼(ÖÐÎÄ°æ);2002Äê02ÆÚ
Ïà¹Ø»áÒéÂÛÎÄ Ç°1Ìõ
1 ÁõÇ¿;ÁõÀèÃ÷;;´øÓÐɾʧÊý¾ÝµÄÏßÐÔEVÄ£Ð͵Äͳ¼ÆÍƶÏ[A];±±¾©ÊеÚÊ®Áù´Îͳ¼Æ¿ÆѧÑÐÌÖ»á»ñ½±ÂÛÎļ¯[C];2011Äê
Ïà¹Ø²©Ê¿Ñ§Î»ÂÛÎÄ Ç°9Ìõ
1 ÍõÅà½à;¹ØÓÚÇø¼äɾʧÊý¾ÝºÍË«ÖØɾʧÊý¾ÝµÄ»Ø¹é·ÖÎö[D];¼ªÁÖ´óѧ;2015Äê
2 ºú´óº£;»ùÓڳ˻ýÏà¶ÔÎó²î×¼ÔòµÄÄ£ÐÍÑо¿[D];Öйú¿Æѧ¼¼Êõ´óѧ;2017Äê
3 ÀîÊ÷Íþ;ɾʧʧЧʱ¼äÊý¾ÝµÄ»Ø¹é·ÖÎö[D];¼ªÁÖ´óѧ;2017Äê
4 ÀîÏÄÑ×;ɾʧָʾÁ¿Ëæ»úȱʧÇé¿öÏ»عéÄ£ÐÍͳ¼ÆÍƶÏ[D];Öйú¿Æѧ¼¼Êõ´óѧ;2011Äê
5 ÕÅËÌ;Ò»ÀàɾʧÊý¾ÝµÄͳ¼ÆÍƶÏ[D];¼ªÁÖ´óѧ;2012Äê
6 ³Ì´Ó»ª;Éú´æ·ÖÎöÖÐɾʧÊý¾Ýͳ¼ÆÍƶϼ°ÆäÓ¦ÓÃ[D];À¼ÖÝ´óѧ;2011Äê
7 ÕÔ¹úÇì;ɾʧÊý¾ÝϵľÑéìغ;ÑéËÆÈ»[D];±±¾©´óѧ;2013Äê
8 Ç®¿¡;Éú´æ·ÖÎöÖÐɾʧÊý¾Ý±ÈÀý¶ÔCox»Ø¹éÄ£ÐÍÓ°ÏìµÄÑо¿[D];ÄÏ·½Ò½¿Æ´óѧ;2009Äê
9 ³ÂÑ©ÈØ;¸´ÔÓÊý¾ÝÏ·ÖλÊý»Ø¹é½¨Ä£¼°ÆäÓ¦ÓÃ[D];ÔÆÄÏ´óѧ;2012Äê
Ïà¹Ø˶ʿѧλÂÛÎÄ Ç°10Ìõ
1 ²Üµ¤µ¤;µÚÒ»ÀàÇø¼äɾʧÊý¾ÝCox±ÈÀý·çÏÕÄ£Ð͵IJÎÊý¹À¼Æ[D];À¼ÖÝ´óѧ;2015Äê
2 ÕÅ·¼·¼;»ùÓÚ¢ñÐÍÇø¼äɾʧÊý¾ÝϵÄÓ¦Á¦¡ªÇ¿¶ÈÄ£Ð͵ķDzÎÊý¹À¼Æ[D];»ªÖÐʦ·¶´óѧ;2015Äê
3 ÀîÎľ²;ÐÅÏ¢Çø¼äɾʧÊý¾ÝµÄͳ¼ÆÍƶÏ[D];½Î÷ʦ·¶´óѧ;2015Äê
4 ÕÂæÃæÃ;ɾʧÊý¾ÝϼÓËÙʧЧģÐÍÑо¿[D];½Î÷ʦ·¶´óѧ;2015Äê
5 ËÎÃ÷Ã÷;¾ßÓÐÐÅÏ¢¹Û²âʱ¼äÏÖ×´Êý¾ÝµÄͳ¼Æ·ÖÎö[D];¼ªÁÖ´óѧ;2016Äê
6 ÕÅÇàÔÆ;»ùÓÚɾʧÊý¾Ý¶ÔһЩ²ÎÊýµÄ¹À¼ÆÎÊÌâ[D];À¼ÖÝ´óѧ;2016Äê
7 Â麣ìÏ;¼ÓËÙʧЧʱ¼äÄ£ÐÍÏÂÏàÒÀÇø¼äɾʧÊý¾ÝµÄ»Ø¹é·ÖÎö[D];¼ªÁÖ´óѧ;2016Äê
8 Ö£Üç;ɾʧҽÁÆ·ÑÓõķÖλÊý»Ø¹é·ÖÎö[D];³¤´º¹¤Òµ´óѧ;2016Äê
9 Áº½à;º¬ÓТòÐÍÇø¼äɾʧÊý¾ÝµÄ»Ø¹éÄ£ÐͲÎÊý¹À¼Æ[D];ɽÎ÷Ò½¿Æ´óѧ;2016Äê
10 èﳿ;»ùÓÚ²¿·ÖÇø¼äɾʧÊý¾ÝµÄÉú´æº¯ÊýµÄ¹À¼Æ[D];»ªÖÐʦ·¶´óѧ;2016Äê
±¾ÎıàºÅ£º1397432
±¾ÎÄÁ´½Ó£ºhttps://www.wllwen.com/shoufeilunwen/jckxbs/1397432.html