中纬度临近空间大气风场变化特性研究

发布时间:2018-01-09 18:26

  本文关键词:中纬度临近空间大气风场变化特性研究 出处:《中国科学院国家空间科学中心》2016年博士论文 论文类型:学位论文


  更多相关文章: 临近空间 中纬度 中间层和低热层 大气风场 大气行星波 大气潮汐波 大气重力波 平流层爆发性增温 中频雷达 流星雷达 WACCM模式


【摘要】:本文主要研究区域为20-100 km临近空间大气,包含平流层、中间层和低热层,是地球大气的重要组成部分。临近空间同时受空间环境以及低层大气的影响,存在复杂的现象和变化特性。大气风场对临近空间大气能量和动量传输过程起到重要的作用,直接影响临近空间的动力学、环流结构,对临近空间的热力学和化学传输也有深远影响。中纬度临近空间大气风场存在显著的多尺度变化特性,具体特征有别于其他纬度,是低纬向高纬的过渡带。开展中纬度临近空间大气风场的研究,有助于理解中纬度临近空间大气环境特性,并可促进全球耦合研究。本文以中纬度临近空间大气风场为研究对象,重点围绕大气潮汐波和平流层爆发性增温事件诱发的大气活动规律进行了深入研究。本文的主要内容有以下几点:(1)利用MERRA再分析资料和URAP资料对WACCM模拟的临近空间大气(20-100 km)纬圈平均纬向风、经向风的季节变化进行检验。结果表明,WACCM能够较好地模拟全球临近空间大气风场的气候特征,可较准确地给出北半球的纬向风,表明WACCM模式可用于对北半球中纬度临近空间大气风场进行深入的研究。(2)利用中国廊坊站(39.4°N,116.7°W)流星雷达整一年的水平风场观测资料分析廊坊MLT区域(80-100 km)大气平均纬向风和经向风随高度和季节的变化特征。结果表明平均纬向风和经向风都表现出显著的季节变化。平均纬向风在冬季MLT盛行西风,极大值位于中间层,西风随高度增加而减弱;夏季中间层为东风,低热层为强西风,风向转换高度位于~82km。平均经向风在冬季以南风为主,在夏季盛行北风。平均纬向风和经向风在春、秋两季为冬季特征和夏季特征的过渡阶段。流星雷达观测结果与WACCM4模式和HWM93模式模拟的气候变化特点基本一致。(3)利用廊坊流星雷达分析了廊坊上空MLT大气纬向风、经向风潮汐的季节变化特征。廊坊MLT区域周日潮汐和半日潮汐波动都比较显著,有明显的季节变化特征。周日潮汐振幅在88 km以下为半年变化,极大值位于2-3月和10月,极小值位于冬、夏季;在88 km以上为周年变化,振幅冬末春初最强,最大值出现在2月位于92 km,纬向分量和经向分量分别为42 m/s和38 m/s,最小值位于夏季。周日潮汐相位在秋、冬季比春、夏季提前。半日潮汐主要呈现半年变化,在5月和9月最强,振幅在9月(~24 m/s)略强于5月(~20 m/s),极小值位于冬、夏季。半日潮汐相位在春、夏季比秋、冬季提前。此外,廊坊风场潮汐的观测结果与WACCM4模式模拟结果进行了比较,结果表明两者的主要特征有较明显的区别。与40°N附近其他站点风场潮汐观测结果的比较结果表明中纬度MLT风场潮汐有显著的随经度变化特性。(4)利用廊坊MF雷达和MERRA再分析资料完整呈现了廊坊上空临近空间(20-100 km)纬向风对2010年和2013年SSW事件的响应,同时与Fort Collins(41°N,105°W)上空纬向风对2009年SSW事件的响应进行了比较。结果显示纬向风对SSW都存在响应,但在表现出不同的细节,主要是反转高度区域。利用SD-WACCM模式模拟结果分析SSW期间形势场,结果显示,在SSW期间,行星波波1和波2有强烈活动,中纬度纬圈平均纬向风减弱为弱西风。受行星波相位的调制作用,同纬度纬向风对SSW的响应随经度变化。由于行星波相位随高度向西倾斜,导致中纬度地区临近空间不同区域的变化不同。(5)利用SD-WACCM模式的2013年SSW期间全球大气形势,对中纬度临近空间大气纬圈平均特征进行了动力学诊断分析。结果表明,SSW期间,行星波(PW1和PW2)活动、重力波(锋面激发重力波、对流激发重力波和地形重力波)传播过程、剩余环流都发生了明显的变化,对临近空间纬向风的发展起不同作用。剩余环流与温度异常有直接关系。本章揭示了引起中纬度大气变化的物理机制。
[Abstract]:In this paper, the main research area is 20-100 km near space atmosphere, including the stratosphere, mesosphere and lower thermosphere, is an important part of the earth's atmosphere. The near space is also affected by the space environment and the lower atmosphere, and the existence of the phenomenon of change of complex characteristics. Atmospheric wind field is an important effect for near space atmospheric energy and momentum the transmission process, structural dynamics, directly affect the near space circulation, thermodynamic and chemical transmission of near space also has a far-reaching influence. In the mid latitude near space atmospheric wind field has multi-scale variation characteristics significantly, specific characteristics different from other latitudes, low latitude to high latitude transition zone. In mid latitude near the research atmospheric wind field space, it can help to understand the characteristics of the space environment near latitude atmosphere, and promote global coupling research. This paper takes the mid latitude near space atmospheric wind field as the research object, Focus on the activities of the atmosphere atmospheric tidal waves and stratospheric sudden warming events induced by in-depth research. The main contents of this paper are as follows: (1) analysis of near space atmospheric simulation data and URAP data of WACCM by MERRA (20-100 km) zonal mean zonal wind, the seasonal variation of the wind test. The results show that WACCM can simulate the global climate characteristics near atmospheric wind field space, can accurately give the northern hemisphere zonal wind, which shows that the WACCM model can be used in the mid latitudes of the Northern Hemisphere near space atmospheric wind field for further study. (2) the Chinese LangFang Railway Station (39.4 ~ N, 116.7 W) meteor radar wind for a whole year of field observation data analysis of Langfang MLT region (80-100 km) average atmospheric zonal wind and meridional wind with altitude and seasonal variation characteristics. Mean zonal wind and meridional wind are the A significant seasonal variation. The mean zonal wind in winter MLT prevailing westerly winds, maximum wind in the middle layer, decreased with increase in height; the middle layer is the summer wind, low layer is a strong westerly wind direction changing, located at the height of ~82km. average meridional wind in winter in South, in summer. The mean zonal wind and northly wind the wind in spring, winter and summer transition characteristics characteristics of the autumn season two. Meteor radar observations of the characteristics of climate change are simulated with WACCM4 model and HWM93 model are basically the same. (3) analysis of the Langfang air MLT atmospheric zonal wind using the Langfang meteor radar, the seasonal variation trend of Xi to Langfang MLT. Regional Sunday tides and semidiurnal tidal fluctuations are more significant, there are significant seasonal variation. Sunday tidal amplitude is below 88 km for half a year change, the maximum in 2-3 and October, minimum in winter and summer; In the above 88 km annual variation amplitude, the strongest in late winter and early spring, the maximum value in February is 92 km, zonal and meridional component are respectively 42 m/s and 38 m/s, the minimum value in the summer. On Sunday the tidal phase in autumn and winter than in spring and summer in advance. The main semidiurnal tide appears semi annual variation in May and September, the strongest amplitude in September (~24 m/s) is slightly stronger than in May (~20 m/s), the minimum value in winter and summer. The semidiurnal tide phase in spring and summer than in autumn and winter in advance. In addition, the Langfang wind tidal observations and results of WACCM4 model were compared. The results show that the main features of the two has more obvious difference. Results compared with the 40 N near other sites of wind tides show that mid latitude MLT wind tide have significant variation with longitude. (4) showed a complete reanalysis data over Langfang near space using the Langfang MF radar and MERRA (20 -100 km) on 2010 and 2013 in response to the zonal wind SSW events, while Fort and Collins (41 ~ N, 105 ~ W) response over the zonal wind of 2009 SSW events were compared. The results showed that there are zonal wind response to SSW, but different in detail, mainly is the inversion height region. The simulation results of SSW situation during field, the result shows that the use of SD-WACCM mode, during SSW, planetary wave 1 and wave 2 has a strong activity, in the mid latitude zonal mean zonal winds weaken the weak westerly. Affected by the planetary wave phase modulation, the same latitude zonal wind of SSW response with the longitude changes. Due to the planetary wave phase tilt westward with increasing height, resulting in changes in latitudes near space in different regions and different. (5) the SD-WACCM model of global atmospheric situation during SSW 2013, the mid latitude near space atmospheric zonal mean characteristics of the dynamic diagnostic analysis. The results showed that during SSW, planetary waves (PW1 and PW2), gravity waves (frontal gravity waves excited, excited convective gravity wave and gravity wave propagation), residual circulation have undergone significant changes, play a different role in the development of near space zonal wind. There is a direct relationship between the remaining ring flow and temperature anomalies this chapter reveals the physical mechanism caused by the mid latitude atmospheric changes.

【学位授予单位】:中国科学院国家空间科学中心
【学位级别】:博士
【学位授予年份】:2016
【分类号】:P425

【参考文献】

相关期刊论文 前10条

1 田玉芳;吕达仁;;北京MST雷达探测中间层-低热层观测结果初步分析[J];地球物理学报;2016年02期

2 郭文杰;胡雄;闫召爱;郭商勇;程永强;杨钧烽;;利用瑞利激光雷达观测北京地区上平流层地形重力波活动[J];地球物理学报;2015年10期

3 刘伟军;徐寄遥;袁椺;;北京地区上空OH转动温度的季节性变化[J];地球物理学报;2015年05期

4 万卫星;徐寄遥;;中国高层大气与电离层耦合研究进展[J];中国科学:地球科学;2014年09期

5 易稳;陈金松;马春波;李娜;赵振维;;昆明全天空流星雷达观测中高层大气温度[J];地球物理学报;2014年08期

6 王英鉴;王咏梅;王后茂;;高层大气测风用地基F-P干涉仪的数值模拟[J];地球物理学报;2014年06期

7 谷升阳;李陶;Alan Liu;Gary Swenson;Chester Gardner;Dennis Riggin;David Fritts;;Hawaii地区钠激光雷达与流星雷达和中频雷达同时观测水平风场的对比分析[J];量子电子学报;2013年01期

8 胡雄;闫召爱;郭商勇;程永强;龚建村;;钠荧光多普勒激光雷达测量中间层顶区域大气温度[J];科学通报;2011年03期

9 肖存英;胡雄;;平流层爆发性增温期间大气变化特性的COSMIC掩星观测[J];空间科学学报;2011年01期

10 闫召爱;胡雄;郭商勇;程永强;吴小成;;钠原子D_2线无多普勒饱和荧光光谱的测量[J];光学学报;2010年04期



本文编号:1402181

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/1402181.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2a0af***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com