时标上的共形分数阶Sobolev空间及其在变分方法中的应用

发布时间:2018-02-26 21:01

  本文关键词: 时标 分数阶Sobolev空间 共形分数阶微分方程 变分方法 出处:《云南大学》2016年博士论文 论文类型:学位论文


【摘要】:本文旨在建立应用变分方法研究时标上的共形分数阶微分方程边值问题的工作空间,并应用变分方法研究时标上的共形分数阶微分方程边值问题解的存在性和多解性.首先我们完善了时标上的共形分数阶微积分的一些性质.其次,我们在时标上的共形分数阶微积分理论的基础上建立了时标上的共形分数阶Sobolev空间,研究了该空间的完备性、自反性、一致凸性、嵌入定理以及其上满足一定形式的泛函的连续可微性等重要性质.最后,作为其在变分方法中的应用,我们在这类空间上构造了时标上的共形分数阶P-Laplacian微分方程边值问题、时标上的共形分数阶Hamiltonian系统、时标上的脉冲共形分数阶Hamiltonian系统、时标上具受迫项的共形分数阶Hamiltonian系统、时标上的共形分数阶脉冲阻尼振动问题等五类时标上的共形分数阶微分方程边值问题的变分泛函,应用临界点理论研究其解的存在性和多解性,并举例说明所给条件的合理性和有效性.
[Abstract]:The purpose of this paper is to establish a workspace for studying boundary value problems of conformal fractional differential equations on time scales by using variational methods. The existence and multiple solutions of boundary value problems of conformal fractional differential equations on time scales are studied by means of variational method. Firstly, we improve some properties of conformal fractional calculus on time scales. Based on the theory of conformal fractional calculus on time scales, we establish conformal fractional Sobolev spaces on time scales, and study the completeness, reflexivity, uniform convexity of this space. Some important properties such as embedding theorem and continuous differentiability of functional satisfying certain form are obtained. Finally, as its application in variational methods, we construct the boundary value problem of conformal fractional order P-Laplacian differential equations on time scales on this kind of space. Conformal fractional order Hamiltonian system on time scale, pulse conformal fractional order Hamiltonian system on time scale, conformal fractional order Hamiltonian system with forced term on time scale, The variational Functionals of Boundary value problems of Conformal Fractional order differential equations on five kinds of time Scales such as conformal Fractional order impulsive damping Oscillation on time Scales. The existence and multiple solutions of the solutions are studied by using the critical point theory. Examples are given to illustrate the reasonableness and validity of the given conditions.
【学位授予单位】:云南大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O175.8

【相似文献】

相关期刊论文 前10条

1 王德金;郑永爱;;分数阶混沌系统的延迟同步[J];动力学与控制学报;2010年04期

2 杨晨航,刘发旺;分数阶Relaxation-Oscillation方程的一种分数阶预估-校正方法[J];厦门大学学报(自然科学版);2005年06期

3 王发强;刘崇新;;分数阶临界混沌系统及电路实验的研究[J];物理学报;2006年08期

4 夏源;吴吉春;;分数阶对流——弥散方程的数值求解[J];南京大学学报(自然科学版);2007年04期

5 张隆阁;;一类参数不确定混沌系统的分数阶自适应同步[J];中国科技信息;2009年15期

6 陈世平;刘发旺;;一维分数阶渗透方程的数值模拟[J];高等学校计算数学学报;2010年04期

7 辛宝贵;陈通;刘艳芹;;一类分数阶混沌金融系统的复杂性演化研究[J];物理学报;2011年04期

8 黄睿晖;;分数阶微方程的迭代方法研究[J];长春理工大学学报;2011年06期

9 蒋晓芸,徐明瑜;分形介质分数阶反常守恒扩散模型及其解析解[J];山东大学学报(理学版);2003年05期

10 陈玉霞;高金峰;;一个新的分数阶混沌系统[J];郑州大学学报(理学版);2009年04期

相关会议论文 前10条

1 李西成;;经皮吸收的分数阶药物动力学模型[A];中国力学学会学术大会'2009论文摘要集[C];2009年

2 谢勇;;分数阶模型神经元的动力学行为及其同步[A];第四届全国动力学与控制青年学者研讨会论文摘要集[C];2010年

3 张硕;于永光;王亚;;带有时滞和随机扰动的不确定分数阶混沌系统准同步[A];中国力学大会——2013论文摘要集[C];2013年

4 李常品;;分数阶动力学的若干关键问题及研究进展[A];中国力学大会——2013论文摘要集[C];2013年

5 李常品;;分数阶动力学简介[A];第三届海峡两岸动力学、振动与控制学术会议论文摘要集[C];2013年

6 蒋晓芸;徐明瑜;;时间依靠分数阶Schr銉dinger方程中的可动边界问题[A];中国力学学会学术大会'2009论文摘要集[C];2009年

7 王花;;分数阶混沌系统的同步在图像加密中的应用[A];第二届全国随机动力学学术会议摘要集与会议议程[C];2013年

8 王在华;;分数阶动力系统的若干问题[A];第三届全国动力学与控制青年学者研讨会论文摘要集[C];2009年

9 张硕;于永光;王莎;;带有时滞和随机扰动的分数阶混沌系统同步[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年

10 李西成;;一个具有糊状区的分数阶可动边界问题的相似解研究[A];中国力学大会——2013论文摘要集[C];2013年

相关博士学位论文 前10条

1 陈善镇;两类空间分数阶偏微分方程模型有限差分逼近的若干研究[D];山东大学;2015年

2 任永强;油藏与二氧化碳埋存问题的数值模拟与不确定性量化分析以及分数阶微分方程的数值方法[D];山东大学;2015年

3 蒋敏;分数阶微分方程理论分析与应用问题的研究[D];电子科技大学;2015年

4 卜红霞;基于分数阶傅里叶域稀疏表征的CS-SAR成像理论与算法研究[D];北京理工大学;2015年

5 杨变霞;分数阶Laplace算子的谱理论及其在微分方程中的应用[D];兰州大学;2015年

6 邵晶;几类微分系统的定性理论及其应用[D];曲阜师范大学;2015年

7 方益;分数阶Yamabe问题的一些紧性结果[D];中国科学技术大学;2015年

8 王国涛;几类分数阶非线性微分方程解的存在理论及应用[D];西安电子科技大学;2014年

9 陈明华;分数阶微分方程的高阶算法及理论分析[D];兰州大学;2015年

10 孟伟;基于分数阶拓展算子的灰色预测模型[D];南京航空航天大学;2015年

相关硕士学位论文 前10条

1 黄志颖;非线性时间分数阶微分方程的数值解法[D];华南理工大学;2015年

2 赵九龙;基于分数阶微积分的三维图像去噪增强算法研究[D];宁夏大学;2015年

3 楚彩虹;单载波分数阶傅里叶域均衡系统及关键技术研究[D];郑州大学;2015年

4 全晓静;非线性分数阶积分方程的Adomian解法[D];宁夏大学;2015年

5 黄洁;非线性分数阶Volterra积分微分方程的小波数值解法[D];宁夏大学;2015年

6 庄峤;复合介质中时间分数阶热传导正逆问题及其应用研究[D];山东大学;2015年

7 高素娟;分数阶延迟偏微分方程的紧致有限差分方法[D];山东大学;2015年

8 赵珊珊;时—空分数阶扩散方程的快速算法以及MT-TSCR-FDE的快速数值解法[D];山东大学;2015年

9 王珍;分数阶奇异边值问题的研究[D];山东师范大学;2015年

10 冯静;一类分数阶奇异脉冲边值问题正解的存在性研究[D];山东师范大学;2015年



本文编号:1539649

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/1539649.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ffc05***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com